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Abstract. We report on measurements of the integrated Stokes parameters of the light
emitted from four well-LS coupled states of the 3p4(1D)4p manifold of Aril, following the
simultaneous ionization and excitation of neutral argon by polarized electrons. As for all states,
the state multipoles of J can be expanded in terms of the total orbital (L ) and the total spin (S)
state multipoles. By splitting each L and S state multipole into multipoles for the core and outer
electron, we have experimentally obtained for the first time the normalized integrated state
multipole of rank 4 (hexadecapole moment) for the 3p4 (*D) core of Aril. We will comment on
the Rubin-Bederson hypothesis as it pertains to this collision system [G. Csanak et a/.,
Comments At. Mol. Phys. 30, 165 (1994)] as well as elucidate the data analysis techniques
used.

INTRODUCTION

The theory of electron-atom interactions has been known in principle since the
development of the Dirac equation, yet it is the tension between "what can be
measured" and "what can be calculated" that has driven much of atomic collision
physics to this day. Recently the convergent close coupling (CCC) technique of Bray
and Stelbovics [1] has proven its efficacy in calculating electron interactions with
simple atoms such as H [2], He and Na [3], and Li [4]. However the situation for the
heavy noble gases is much more complicated; agreement between theory and
experiment in this area ranges from adequate to dismal [5-8].

Our experiment is centered around the three body process of simultaneous
ionization and excitation of Ar II. The specific process we examined is given by the
reaction
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e'+Ar(3p6) -> Ar+*(3p4(1D)4p) + 2 e "
, (1)

\ Ar+*(3p44sor3p43d) + 7

where the excited states of interest in the 3p4(1D)4p manifold are 2F7/2, 2Fs/2, 2D5/2, and
2Ps/2. The incident electron beam is transversely polarized and the scattered electrons
are not detected. These particular residual ionic states are advantageous because they
are known to be well-LS coupled [9], unlike neutral Ar. This simplifies the
interpretation of our data and reduces the difficulty for theory to calculate electron-
atom scattering processes [7, 8].

Our goal is to characterize the final state atomic charge cloud in terms of individual
contributions from the 3p4(*D) ionic core and the excited 4p outer electron. The shape
of the charge cloud is completely described by the tensor multipoles of the excited
ion's density matrix [10]. As detailed in our earlier work [11], the tensor multipoles of
L can be expanded as

lc 10 L

(2)

where the subscripts c and o refer to the multipoles associated with the core and outer
electron. Notice that the multipole moments of the 3kq (lc) and 3kq (10) sub-shells

are generally not factorable, i.e. i3^q (lc}®3k\ (/0)) is not generally equal to

(^kq (lc)}(%\ (O)- Therefore it is crucial to choose an experimental system where
the multipole moments can be factored or where one can make enough observations to
completely determine the coupled multipole moments. We introduce the following
notation for the reduced multipole moments :

which will be used throughout the remainder of this work.
Because of our collision geometry, symmetry allows only a few of the multipoles

of J to be non-zero [11]. Since these ionic states are well-LS coupled, L and S are
good quantum numbers and the expansion of the multipoles of J into products of L
multipoles and S multipoles is allowed [12]. We now invoke the Rubin-Bederson (RB)
hypothesis [11], which states that if the collision time is significantly shorter than it
takes for the excited system to "relax into its energy eigenstates", the collision can be
considered as impulsively preparing each subsystem of the ion (the core, outer
electron, and continuum electrons).
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To determine whether the RB hypothesis should hold true it is necessary to check
the appropriate time scales. The duration of the near threshold ionization/excitation
process can be estimated by the time it would take an electron with the asymptotic
energy of 2 eV to traverse three diameters of the residual ion, or ~6xlO~16s. This is a
factor of 3 shorter than the "Coulomb relaxation time", the time necessary to couple lc
and 10 into the total L, conservatively gauged by the largest splitting in the 3p4(!D) 2L
manifold. The next time scale is the "fine structure relaxation time" which can be
estimated from the energy splitting of the 2Fy/2 and 2Fs/2 fine-structure levels, and
corresponds to 10" s. Therefore we would expect the RB hypothesis to hold in this
experiment, if only marginally for decoupling L into lc and 10.

In our experiment, as well as the general case of atomic collisions, the fine-
structure relaxation time is much longer than the collision time. According to the RB
hypothesis, this implies that the subsystems of L and S can be described independently
of each other, i.e. that the multipoles 1KQ(L], ^KQ(S) are properties of the manifold
and are not properties of the individual states of the manifold. Assuming that this
relationship is not then perturbed by terms that would convert angular momentum from
one form to another (i.e. L to S), these multipoles of the manifold can be determined
by observing a subset of the J multipoles of the manifold's individual states. The same
argument allows the separation of the spin and orbital angular momentum belonging to
the 3p4(1D) core and 4p outer electron. This is the cornerstone of the separation the
subshell multipoles presented in this paper, where we observe the multipoles of several
states in a given manifold through the integrated Stokes parameters.

In this case there are only three independent parameters to describe the orbital
angular momentum distribution :

40(/ c),40(/0),and40(/ , ,) .

Expanding eq. (2) in terms of L, lc, 10, and these parameters we find that

where the coefficients CIL...CSL depend only on L, and the function FL() is defined for
use in the following section.

DATA ANALYSIS

Figure la presents the "raw" values of iKQ (L) for the states of interest. Due to the
non-linear nature of eq. (3), some care must be taken in determining the values of the
4g (£)'•?. To address this issue we inverted the equation using a terrain search
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Figure la) The multipoles of the total angular momentum, L, generated from the relative
Stokes parameters of the resonance fluorescence due to the reaction (1). Figure Ib) The
calculated values of the multipoles of the 3p4(1D) and 4p subshells of the Ar+ ion excited by
electron impact.

algorithm and computed the uncertainties associated with the derived quantities (the
multipoles of lj and 10) using a Monte-Carlo method.

The terrain search algorithm minimizes the Euclidian distance, d, between the
measured vector {^0(L = 3), £>Q(L = 2), ^(L-\)} and the estimated vector

weighted by the uncertainty in the measured values. To find the global minimum of d
it is generally necessary to find the smallest local minimum in d by starting at various
points in { 40 (lc ) ? 4o (k ) > 4o (L ) } space. Fortunately, because they are derived from
angular momenta, the space of { 40 (lc ) > 4o (k ) > 4o (L ) } ls bounded by a finite region
so it is possible to search the space exhaustively or by the more efficient method of
random sampling.

Though the propagation of errors technique is the de facto standard for computing
the uncertainty in derived quantities, given a known uncertainty in the data, this
method has some significant drawbacks. It can give misleading results if the function
that must be evaluated has high curvature in the region of interest. However it is
possible to use Monte-Carlo methods to determine these uncertainties without any
prior knowledge or prior assumptions about the function that must be determined [13].
The method relies on generating an artificial set of points that stands in as a proxy for a
given datapoint and its uncertainty. Therefore the artificial set must encompass all a
priori knowledge of data : i.e. it must be statistically indistinguishable from the parent
distribution from which the data was drawn. Given the fact that we can derive values
and uncertainties for the 4o(^) from experimental data with known statistical
properties, we know that the Gaussian distribution corresponds very closely to the
actual parent distribution of each of the
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Figure 2 A representation of the distribution of the multipoles of the 3p4(1D) core and 4p outer electron
generated from the set of synthetic data corresponding to the 40.2eV datapoint of Fig. la.

Figure 2 is an example of the typical "solution cloud" that we obtained for each
energy we investigated. The top graph is a scatter plot of the local minima for the
simulated set of data at an incident electron energy of 40.2 eV. The bar graphs below
show the projection of this probability distribution onto the three individual axes. The
mean value and width of these distributions corresponds to the solution and uncertainty
in the quantities 4o (4 ) > 4o (L ) > and 4o (^ ) • Each graph is unimodal, compact, and
could be well described by a Gaussian function. All of these considerations point to the
fact that this is a good, well defined solution.

With only moderate assurance that the RB hypothesis holds for the core and orbital
angular momenta, we were somewhat concerned that the multipoles might not factor
as in eq. (3), i.e. that are 40 (0 and 4o (O are correlated. In this case there would be
only three measurements and four independent parameters :

If there was correlation between the two parameters 4o (4 ) anc* 4o (L ) > then
quantity

/00,20 (4)
/00,20

which measures this correlation, would be non-zero. Figure 3 presents the solution of
the listed multipoles for many choices of x. It is obvious that the quoted value of
4o (lc) ~ (%> Cc) ® % &)) / (3J (lc) ® 3o (/,)) is consistent with the graph up to x =
0.5. In combination with the fact that the RB hypothesis appears to hold for the orbital
angular momentum, the results in Figure 3 indicate that our analysis can accurately
determine the hexadecapole of the Ar+ 3p4(!D) core.
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Figure 3 The calculated values of the multipoles of the 3p4(!D) core and outer 4p electron, as a function
of correlation (eq. (4)). The points correspond to the reported values assuming no correlation, and the
dotted lines correspond to the la error bars.

RESULTS AND CONCLUSIONS

Applying the method described in the previous section we were able to deduce
values of the multipoles for the 3p4(1D) core and 4p outer electron subshells. These
subshell multipoles are presented in Figure Ib. This method hinges on the
applicability of the RB hypothesis. The measurements reported here would not be
invalidated, even if the RB hypothesis did not hold rigidly true for the core/outer
electron subsystems. The similarity of the 4o (L = 2) multipoles for J = 5/2 and 7/2 in
(Figure la) confirms this for fine-structure relaxation, as do our spin polarized
measurements [11].
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REFERENCES

[I] I. Bray, Phys. Rev. A 49 (2), 1066 (1994).
[2] I. Bray, A.T. Steobivics, Phys. Rev. A 46 (11), 6995 (1992).
[3] N. Anderson and K. Bartschat, Adv. At. Mol. Phys 36, 1 (1996).
[4] V. Karaganov, I. Bray, P.J.O. Teubner, and P. Farrell, Phys. Rev. A 54 (1), R9 (1996).
[5] P.A. Hayes, D.H. Yu, and J.F. Williams, J. Phys. B 31, L193 (1998).
[6] V. Zeman et al, Phys Rev. A 58, 1275 (1998).
[7] I.E. Chilton and C.C. Lin, Phys. Rev. A 60, 3712 (1999).
[8] B.G. Birdsey et al., Phys. Rev. A 60, 1046 (1999).
[9] X. Quo et fl/., J. Phys. B 32, L155 (1999).
[9] H. Statz et al, J. App. Phys. 36, 2278 (1965).

[10] K. Bartschat, K. Blum, and J. Kessler, J. Phys. B 14, 3761 (1981).
[II] H.M. Al-Khateeb, B.G. Birdsey, TJ. Gay, Phys. Rev. Lett. 85 (19), 4040 (2000).
[12] K. Blum, Density Matrix Theory and Applications (Plenum, New York, 1996).
[13] J.M. Chambers, Computational Methods for Data Analysis (Wiley, New York, 1977).

255


