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Stern-Gerlach Effect for Electron Beams
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The conflict between Bohr’s assertion that the magnetic moment of the electron cannot be mea
with experiments based on the concept of classical trajectories, and the measurement of the ma
moment of electrons in a modified Penning trap by Dehmeltet al. has led us to reevaluate other
implications of Bohr’s assertion. We show that, contrary to the analysis of Bohr and Pauli,
assumption of classical trajectories in a Stern-Gerlach–like device can result in a high degree o
separation for an electron beam. This effect may persist within a fully quantum-mechanical ana
The magnetic fields considered are such that a tabletop Stern-Gerlach electron spin filter is fea
[S0031-9007(97)04768-6]
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In the early years of quantum mechanics, several
its inventors debated at length if a Stern-Gerlach magn
could be used to polarize electrons beams. Stern a
Gerlach, in their famous experiment, had demonstrate
such a device for atoms. The problem with using
standard Stern-Gerlach magnet for electrons is that t
splitting is completely blurred by the Lorentz force acting
on a beam of finite transverse dimensions [1]. Brillouin
suggested an alternate experiment in which the electro
were separated by spin using magnetic gradient forc
acting along the direction of motion, instead of transverse
to it [2]. This approach, however, was declared unsoun
by Bohr’s assertion, as formulated by Pauli, that “it is
impossible to observe the spin of the electron, separat
fully from its orbital momentum, by means of experimen
based on the concept of classical particle trajectories” [3].
At the sixth Solvay conference Pauli, supported by Boh
explicitly rejected Brillouin’s proposal as well as three
others [4]. Any attempt to turn a thought experiment into
real one was thus discouraged at an early stage. The Bo
Pauli arguments have been codified in many textboo
and monographs, and today it is widely accepted that it
impossible to construct an electron-polarizing beam splitt
that uses macroscopic electromagnetic fields [5–8].

Recently, however, the range of validity of Bohr’s
assertion has been rendered uncertain by the beaut
experiments of Dehmelt and his colleagues, in whic
0031-9007y97y79(23)y4517(5)$10.00
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electrons of a given spin are isolated in a modified Penn
trap, allowing a determination of their magnetic mome
mB [9]. In view of this, we feel it important to study furthe
the range of validity of Bohr’s edict. The explicit use o
the phrase “classical trajectories” in his arguments ma
useful any counter-argument based on such concepts, n
of which exist to our knowledge.

Thus in this Letter, we address the specific quest
of whether one can, while considering classical partic
trajectories, separate an electron beam by spin, using
apparatus based on magnetic fields alone. Such syst
are conceptually simple and analogous to the traditio
Stern-Gerlach situation and Brillouin’s thought expe
ment. Moreover, since they involve beams of electro
they could be used as sources or analyzers of polari
electrons. An example similar to Brillouin’s original pro
posal is considered and yields a complete separation of
electron spins. This result contradicts Pauli’s rejection
Brillouin’s proposal, which is based on an oversimplifie
approximation of the electron trajectories. A full quantum
mechanical treatment of this problem is beyond the sco
of this Letter, but we present a brief argument that a s
splitting of the electrons, albeit reduced, will persist in a
electron wave treatment. A device based on our analy
is experimentally feasible.

In Brillouin’s proposal [2], electrons with a precis
energy are injected into an inhomogeneous magnetic fi
© 1997 The American Physical Society 4517
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at some angle to the primary direction of the field, whi
we choose to be along thezaxis. The kinetic energy of the
electrons associated with their velocity alongẑ depends on
this angle, and the potential energy depends on their s
projection along the same direction. Electrons with sp
parallel to the field require a different minimum insertio
angle than those with spins antiparallel to it if they are
reach the magnet pole piece that generates the field an
detected. Determination of these minimum angles in eff
determines the Bohr magneton. Alternately, this sche
can be viewed as separating electrons by spin.

We now paraphrase the Bohr/Pauli refutation of Br
louin’s proposal [4]. Consider electrons moving paral
to thez axis and antiparallel to the primary magnetic fie
direction. If ≠Bzy≠z . 0, then electrons with their spin
parallel to thez axis with initial speedyz stop and reverse
direction within a timet given by myz  mBs≠Bzy≠zdt,
wherem is the electron mass. The number of electrons t
cover a distance alongz greater thanyzt is half the num-
ber that would cover this distance in the absence of s
Now suppose that the magnetic field is parallel everywh
to thexz plane, so that≠Bxy≠x  2≠Bzy≠z. If the field
at x  0 is exactly alongẑ, then at a distanceDx from
the z axis the magnetic field componentBx is given by
Bx  s≠Bxy≠xdDx  2s≠Bzy≠zdDx. This field causes
the velocity in thez direction toreverse sign(our italics)
in the Larmor precession time. If the device is to separ
trajectories based on field-gradient spin forces, then s
forces must act over a time much less than the Larmor p
cession time, i.e.,t ø hymBBx must hold or, equivalently,
mBs≠Bzy≠zdtDx ø h, which reduces tomyzDx ø h.

Because of the wave nature of the electron this last c
dition (though formally different from the uncertainty re
lation) cannot be satisfied during the complete interact
time, because the de Broglie wavelengthl is justhymyz ,
and beam widthsDx such thatDx ø l are not possible.
Should one attempt to create such a beam with an a
ture, thenDyx . hysmDxd by the uncertainty principle,
which requiresDyx ¿ yz, and the outcome of the exper
ment cannot be predicted by classical mechanics. H
Pauli’s central argument stops.

This reasoning is questionable for it incorporates an il
gitimate approximation of the actual classical trajectori
Although an electron slightly displaced from thezaxis will
experience a force that starts to rotate its velocity towa
they axis, the change in the direction of motion is modifie
by the small inducedy component of velocity which in turn
causes a Lorentz force due to the magnetic field alongẑ.
The resulting trajectory is the familiar helical spiral aroun
the direction of the magnetic field, with only one directio
of motion resulting along thez axis.

Dehmelt has disputed Pauli’s more general 1932 “pro
of Bohr’s assertion [9,10]. Pauli showed that an expans
in terms ofh̄ for solutions of the Dirac equation leads t
the conclusion that “all effects on the density and flow o
the particles due to the spin appear automatically in t
4518
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same order of approximation as effects due to diffractio
of the matter waves.” This means that both the spatial split
up of the two spin states of an electron beam by a Ster
Gerlach magnet, and the blurring of this split up due t
diffraction, are proportional tōh. Bohr’s assertion is thus
based on “taking the classical limit”̄h ! 0. For this limit
not only the blurring, but also the Stern-Gerlach splittin
vanishes. However, Dehmelt argues thath̄ is a nonzero
constant of nature, and that the classical limit must b
approached in other ways. He proposes three criteria
achieving this: (a) using an apparatus in which the Loren
forces are minimized, (b) maximizing the spin forces b
using large magnetic field gradients, and (c) eliminatin
wave effects by using an apparatus whose characteris
dimensions are much larger than the electron wave pack
The example given by Dehmelt of an experiment satisfyin
these conditions involves a combination of an electr
and magnetic field, and is analyzed in terms of quantum
mechanical states. Moreover, he does not address
completeness of the separation of the spin compone
[11,12], making a comparison with Bohr’s assertion eve
less direct, and the implications for a Stern-Gerlach–lik
beam apparatus less obvious.

Still, Dehmelt’s three criteria seem generally appli
cable, and we study their usefulness in an example w
an electron beam in a pure magnetic field, using classic
particle trajectories. The essential problem with the tran
verse Stern-Gerlach geometry is that large Lorentz forc
act on a charged-particle beam. To eliminate this proble
we propose, like Brillouin, that longitudinal fields be used
The application of ancillary electric fields appears to be u
necessary to realize a successful spin filter [4]. We co
sider two geometries: that of a two-wire field [Fig. 1(a)
in which the plane containing the wires is perpendicula
to the primary electron beam axis, and that of a soleno
[Fig. 1(b)], whose axis of symmetry is along the beam
direction.

We now describe our semiclassical approach to th
behavior of the electrons in a magnetic field. The electro
spin is treated quantum mechanically as required by t
nature of the problem. As usual, the amplitudesai for
the spinorsa are given in terms of the magnetic field

FIG. 1. (a) Schematic drawing of the two-wire longitudina
“Stern-Gerlach” geometry. Beam splitting occurs along th
z axis. (b) The solenoid geometry; splitting is also alongẑ.
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µ
a1

a2

∂
 mB

µ
Bz Bx 1 iBy

Bx 2 iBy 2Bz

∂ µ
a1

a2

∂
. (1)

The energy eigenvalues that are used below in the tre
ment of the motion areE6  6mB

p
B2

x 1 B2
y 1 B2

z . In
all simulations discussed here, the spin-flip probability wa
found to be less than1023 per electron. The strong adia-
baticity of the electron spin precession in the slowly chan
ing magnetic fields we considered effectively prevents sp
flips from occurring.

The electron motion is treated semiclassically. Com
paring the de Broglie wavelength of the electrons (,1 nm)
with the typical size (,1 cm) of the proposed geometries
seems to justify this approach. Moreover, in view of th
Bohr phrase “particle trajectories” and Pauli’s use of cla
sical trajectories in his rejection of Brillouin’s proposal
such a treatment is appropriate.

Following Pauli’s approach, the spread in the initial con
ditions for the electron trajectories was chosen to be co
sistent with the Heisenberg uncertainty relations. We us
initially Gaussian spatial and velocity distributions, with
respective widthsD$ri andD $yi, with an average velocity
$yz . The choiceD$ri  D $yit, wheret is the electron flight
time, minimizes the geometric beam spread in the absen
of fields. In combination with the uncertainty principle, i
determines the set of initial conditions of the trajectories

The force acting on the electrons due to the magne
field is given by the sum of the Lorentz force and the sp
force $Fs,6  2 $=E6, which is connected to the quantum
mechanical description of the spin by the use of the ener
eigenvaluesE6. For particles confined to thez axis, we
can calculate analytically the spatial separation of the tw
spin componentsDzspin from

Dzspin 
Z Z 1

m
≠sE1 2 E2d

≠z
dt0 dt


Z Z 2mB

m
≠Bz

≠z
dt0 dt .

(2)

For general particle trajectories, we have numerically int
grated the equations of motion. The trajectories are d
termined using eitherE1 or E2. Both the equation of
motion and the equation for spin are integrated simultan
ously to obtain the trajectory of the electron and its spin-fl
probability.

Now we consider the first case of an electron bea
along thez axis passing through the middle of two current
carrying wires [Fig. 1(a)]. The wires run parallel to the
y axis a distance6a from it and each carries a currentI
flowing in opposite directions. Apart from the fact tha
the resulting magnetic field is directed primarily along th
electron beam direction, thus minimizing Lorentz force
the choice of this geometry is based on two consideratio
First, its two-dimensional nature recalls Pauli’s argume
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above, and second, the analytic expression for the magne
field over all space is simple. To illustrate our results, w
take the initial positions of the electrons along the directio
of motion to be one meter away from the wires,yz to be
105 mys, anda  1 cm. The equations of motion were
integrated for20 ms (corresponding to a2 m flight path)
with a Gaussian distribution of starting positions of80 mm
FWHM along all three axes, and with a three-dimension
Gaussian distribution in the starting velocities of4.0 mys
FWHM, satisfying Heisenberg’s uncertainty relations [13
and corresponding to the spreading minimization criterio
mentioned above. The field strength exactly between t
wires, B0, is taken to be 10 T. The spatial separation o
the two spin components can be estimated by evaluati
Eq. (2). The result for an on-axis trajectory fromzi to
zf is

Dzspin 
2amBB0

my2
z

3

∑
tan21szfyad 2 tan21sziyad 2

szi 2 zf da
a2 1 z2

i

∏
,

(3)

which for the above parameters equals631 mm, in agree-
ment with our numerical simulation shown in Fig. 2(a).

The results of this calculation offer a direct counter
example to Pauli’s arguments. Our simulation shows th
the electrons behave in the magnetic field in a mann
qualitatively similar to that predicted by Brillouin; they
execute spiral trajectories about the pinched field lines wi
decreasing helical radii as they approach the wires. Th
illustrates the conceptual problem with Pauli’s argume
paraphrased above. While the on-axis spin splitting

FIG. 2. (a) The spatial distribution of electrons before an
after passage through the two-wire field. Open circles re
resent “spin-up” electrons; solid circles represent “spin-down
electrons. The solid line encloses approximately 90% of th
electrons in their initial Gaussian spatial distribution (see tex
inserted 1 m upstream of the wires. (b) Same as above b
with initial conditions corresponding to then  0 Landau
state. Note the scale change, and the fact that the Land
n  0, ms  21y2 electrons are not accelerated longitudinally
4519
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derivable analytically, the numerical simulation is crucia
to show that no off-axis effects blur or reduce the splitting

Can such spin splitting be expected to persist in
quantum-mechanical calculation? We present an argum
in favor of an affirmative answer. In a homogeneou
magnetic field alonĝz the Landau energy eigenvalues fo
an electron are given by [14]

En  p2
z y2m 1 s2n 1 1dmBB 6 mBB ;

n  0, 1, 2, . . . .
(4)

Both the second and third terms of Eq. (4) result in force
acting on the electrons when magnetic field gradients a
present. The spin force we have used in the simulatio
above is the gradient of the last term. The gradient
the second term corresponds to a “magnetic bottle” for
associated with the transverse motion of the electron
Classically, as the field strength increases, the electro
spiral in increasingly tighter orbits, losing longitudina
kinetic energy in the process. In the simulation abov
these forces were negligible compared with the spin forc
Quantum mechanically, however, one is not free to choo
any Dri and Dyi that satisfy Heisenberg’s uncertainty
principle, as we did in the above simulation and as Pa
did. Instead, we must pick initial distributions that matc
those of Landau states. Even then  0 Landau level has
a transverse momentum distribution much broader th
that associated with the minimum spreading criterion us
above, and the magnetic bottle forces are correspondin
larger. Running our simulation with initial conditions
appropriate for the lowest Landau state yields a blurrin
of exactly the same size as the split up of the two electr
spin components, as one would expect from the equ
magnitude of the second and third terms in Eq. (4). The
results are shown in Fig. 2(b). It is apparent that when o
uses initial conditions dictated by quantum mechanics, t
spin splitting by the magnetic field is blurred significantly
The important point here, though, is that the beam splittin
is still clearly evident and not marginal. This is in marke
contrast to the generally accepted interpretation of t
Bohr/Pauli assertion and to the case of electron deflecti
by a transverse Stern-Gerlach magnet, where the s
blurring is essentially complete [15].

Though the two-wire geometry illustrates the problem
with Pauli’s argument, it would be impossible to realiz
experimentally; to obtain the spin separation of the bea
shown in Fig. 2(b), we usedI  105 A. To reduce this
current, we also considered the behavior of an electr
beam traveling close to the symmetry axis of a soleno
with radiusa  1 cm. The spin separation [Eq. (2)] for
electrons traveling exactly on the axis of symmetry (r  0)
over a distance much greater than the solenoid radius i

Dzspin 
2LmBm0nI

my2
z

, (5)

whereL is the solenoid length andn is the linear winding
density. This means that the required current for a0.5 m
4520
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long solenoid with10 000 turns and an inner diameter o
1 cm is 5 A. Chopping an electron beam at a frequen
of 1 GHz would allow a separation of the spin componen
to be observed with a time resolution of1 ns. The
low-velocity tail of a 10 eV, 1 mA beam transversely
collimated through two1 mm apertures2 mm apart would
yield an estimated signal of0.3 electrons per second. Th
results of our simulation for this geometry agree wi
Eq. (5) and are essentially identical to those shown
Fig. 2(b).

In summary we have presented a semiclassical anal
of an electron beam passing through an inhomogene
magnetic field. The main results and conclusions of t
work are the following: (a) The outgoing beam has com
plete spatial separation of the electron spin compone
(b) the Bohr-Pauli analysis of Brillouin’s thought exper
ment is incorrect, (c) Bohr’s general assertion concern
observation of electron spin is not universally applicab
(d) a provisional estimate of the quantum-mechanical
sult shows that the spin splitting is blurred to the sam
order as the splitting itself, but that nonnegligible pola
ization effects are still extant, and (e) our geometrie
chosen in accordance with Dehmelt’s three criteria, in
cate that it is reasonable to attempt the design of a Ste
Gerlach device for an electron beam.
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