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Chapter 1

Report

1.1 Introduction

Over the past 6 months, I have been collecting data with the Rubidium (Rb)
Spin Filter Apparatus to better understand the effect of buffer gases on the
ability to extract a beam of spin polarized electrons from a polarized Rb gas
and incident beam of unpolarized electrons. This represents the latest efforts in
the continued development of this apparatus.

My specific goal with this dataset was to determine the best buffer gas
species, pressure, and Rb number density combination to maximize the ex-
tracted electron polarization. For a given buffer gas type and pressure, three spin
transfer efficiency datasets were collected at differing nRb, spanning 1.5 orders
of magnitude. The target densities were 3×1012, 10×1012, and 30×1012 atoms

cm3 .
The idea to collect this dataset was developed in collaboration with Dr.

Tupa. The logic behind the necessity for this dataset is as follows. When nRb
is low the Rb polarization will be high- nearly 100%, as one does not have to
combat with the effects of radiation trapping at these densities. Despite the
high PRb, the Pe will not be at its maximum value because there aren’t enough
Rb atoms for the free electrons to spin-exchange with and obtain a polarization.
In the opposite direction, with a high nRb there will be enough Rb atoms for
the free electrons to interact with, but PRb will be lower due to the effects of
radiation trapping. Therefore, there must be some intermediate nRb for which
PRb remains high, but there are enough Rb atoms that the free electrons are
able to interact and obtain their polarization. This idea was summarized in a
series of notes Dr. Tupa and I recorded to communicate the concept. These
notes have been photocopied and are available at the end of the report in the
Appendix (Chapter 2).

Dr. Tupa had initially suggested collecting the data at whatever maximum
buffer gas pressure we could obtain. This original idea was abandoned when
the viewports quickly became coated with an opaque substance. The substance
appears when running the system with either N2 or ethene, though the effects
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Figure 1.1: A schematic of the electron gun with the names of the electrodes
for referencing the potentials.

did seem to be more pronounced when operating the system with ethene.

1.2 Methods

1.2.1 Data Collection

For all but one experiment contained in this report, the incident electron energy
was held constant at 100 eV. I consciously chose to keep the electrodes at the
same potential throughout the run, though I may have failed in this respect with
one electrode’s potential. The wiring used was Munir’s, save for the entrance
and exit electrodes which referenced the target instead of ground. A diagram of
the system can be found in Fig. 1.1, and the potentials that optimize electron
transmission as well as Munir’s typical potentials are shown in Table 1.1

Two difference specie of buffer gas were used in this study, N2 and C2H4.
Since Convectron gauges assume Nitrogen in their pressure readouts, a correc-
tion must be made to the readout of the gauge to get the true pressure in the
system when ethene is being used. Grandville Phillips’ instruction manual for
the gauge has calibration curves for a number of gases, but it does not include
ethene. We used the calibration curve for methane (CH4) instead. Our experi-
ments were conducted in a range of buffer gas pressures (1-1,000 mTorr) where
a simple offset is used to correct the convectron gauge. For the values reported
here, I have assumed a gauge reading of

600 mTorr C2H4 = 375 mTorr N2 (1.1)

That is, the gauge readings for ethene were multiplied by .625 to obtained the
true pressure in the system. This correction has been applied to the ethene
pressures reported in this document.
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Electrode
Name

100eV
Value

Pirbhai’s
100eV

2eV
Value

Pirbhai’s
2eV

1A -152.2 -141 -44.3 -37
Filament -140.5 -141 -37 -37
1B -120 -112.5 23.5 -8.5
1C -127 -100 16.1 4.1
1D -43.2 -35 -35 -35
Collision Cell -40.2 -33 -34 -33
2A -37.1 -30 -31 -30
2B 0 10 -39.3 10
2C -18.7 N/A -18.6 N/A
2D1 -10 0 -.4 0
2D2 -10 9 .4 9
2E 0 0 0 0
2F 0 0 0 0

Table 1.1: Potentials the electrodes were set to for this run and comparisons to
the values that I assume Pirbhai used. I am simply translating the potentials
that he notes in his thesis and converting them to reference ground, assuming
that he made no adjustments to the tuning and simply increased the “Filament”
value to obtain different incident energies.

The general procedure for collecting data at a given nRb and BGP is as
follows.

1. Set the BGP leak valve to a value which corresponds to the desired BGP.

2. Set the filament current to 4.5 A.

3. Set the variacs so that the reservoir achieves the desired temperature and
the collision cell is roughly 20oC hotter than the reservoir. The number
densities probed required reservoir variac settings between 18 and 26 V.

4. Configure the system to collect absorption scans, doing so every 10 min-
utes.

5. Monitor the absorption scans to track how much Rb is in the system.

6. When the density is roughly 1×1012 atoms
cm3 , configure the system to collect

Faraday rotation data.

7. Continue monitoring the density through the Faraday rotation data until
it has reached an equilibrium point.

8. If the equilibrium point is a quarter order of magnitude different from a
data point that has already been collected, proceed to collecting a spin
transfer dataset. If not, adjust the variac setting and again wait for an
equilibrium value.
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9. If time permits, collect data for another nRb value. Adjust the variac and
monitor the density through Faraday rotation and repeat the above steps.

Collecting a Spin Transfer Dataset

Collecting a Spin Transfer Dataset consists of a background measurement and a
signal measurement. For most datasets, I collected the background data before
the signal, but in some instances the order was reversed.

The background measurement was typically preceded by an “energy defining
excitation function” where I would determine the potential at which I should set
the helium target to be at the peak of the excitation function. Once that was
determined, I could collect background data for the polarimeter at that Helium
target potential.

Collecting the background data consisted of 26 polarization runs divided
into:

Beam off background Of the 26 runs 9 were collected with the beam off.
The 9 runs are divided equally into three categories, pump laser off, pump
laser pumping with σ+ light and pump laser pumping with σ− light.

A “Beam off” run means that the electron beam is prepared as normal
except the deflector plates are set to the maximum voltage, steering the
electron beam away from the Faraday collector. No electron current should
be reaching the detector, though operationally, there was a 7 nA signal on
the ammeter. The number of counts did not increase though, indicating
that this was not truly an electron beam.

Gas off background Of the 26 background runs, 15 runs were collected with-
out helium gas in the polarimeter chamber. These 15 runs are divided
equally into three categories, in the same way as the “Beam off” back-
ground.

A “Gas off” run means that the electron beam is prepared as normal
except the helium gas is turned off.

Collecting the signal for the spin transfer dataset was automated by a com-
puter script. The script would first collect electron polarization data, then
measure the Rubidium polarization, then collect excitation function/ retarding
field analysis (RFA). Once this had been completed, the pump laser frequency
would be adjusted and the whole process was repeated. The pump laser fre-
quency was changed in 2 GHz steps, starting at 3 GHz and ending at 11 GHz.
The peak polarization is typically obtained at 2.75 GHz.

The electron polarization data consisted of 15 full revolutions of the po-
larimeter divided equally into 3 categories. The three categories are pump laser
blocked, σ+ light, and σ− light- collected in that order. The categories were
interleaved, so the first and fourth runs were both pump laser blocked runs.

After the electron polarization the Rb polarization was measured with Fara-
day rotation. This was accomplished with 3 “Faraday scans” where the plane
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Figure 1.2: Expected absorption profiles at densities below 5×1012 atoms
cm3 . These

are used to get a rough estimate of the number density in the system while the
chamber is warming.

of linear polarization of the probe laser is measured at 6 detunings. These scans
were divided into the same categories as mentioned for the polarization data.

After the Faraday scans, two excitation functions are collected. One is col-
lected with the pump laser blocked and one with the pump laser on.

1.2.2 Data Analysis

Absorption Scan

Absorption scans are collected regularly to monitor the density of Rb present
in the system. Absorption scans are used primarily when the amount of Rb
less than 1 × 1012 atoms

cm3 , once the density is above this threshold, the Faraday
rotation method provides a much more precise way to calculate the density.
Using the absorption scans, I can measure a density as low as 4.2× 1010 atoms

cm3 .
These were used to give an indication to the progress of warming the Rubid-

ium as the system was first starting up. A more rigorous method could be used
to obtain a number density for a given scan, but I chose to qualitatively compare
the scans to simulated data for a rough estimate. To this end, I compared the
scans obtained to a series of profiles, shown in Fig. 1.2 and Fig. 1.3.

Excitation Function

Excitation functions are analyzed in a similar manner to Absorption scans.
Often, simply observing the plotted data is all the required analysis. The key
feature which is sought is where the helium fluorescence begins. The location of
the beginning is not made with an algorithm- it was simply my discretion. Once
the energy where the counts began rapidly increasing was identified, I added 7
eV to this energy and set the Helium potential to this value when collecting
polarization data.
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Figure 1.3: Expected absorption profiles at densities above 4×1012 atoms
cm3 . These

are used to get a rough estimate of the number density in the system while the
chamber is warming.

Faraday Rotation nRb

The equation that I use to calculate nRb is given by

nRb =
2h

recµB

ν2o
fgeκ

A2∫
B · dL

(1.2)

Where the variables have the following meanings, and the units are chosen such
that the number density will be reported in particles per cubic centimeter. The
exact values which I used can be found in the appendix.

A2 = fitting parameter, see below

h = Planck’s constant

νo = line center frequency

L = the length of the cell

re = classical radius of the electron

c = speed of light in a vacuum

fge = transition strength

κ = constant arising from selection rules [3, pg. 95]

B = magnetic field strength

µB = Bohr Magneton

nRb = rubidium number density

∆θ = Faraday rotation angle

ν = frequency of probe laser

The fitting parameter A2 comes from fitting the following equation to the col-
lected data.

θ(ν) =
A2ν

2
oν

2

c2(ν − νo)2
+

A4ν
2
oν

2

c4(ν − νo)4
(1.3)
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I analyzed the number density using 4 data points at probe laser detunings
of -30,-15,15, and 30 GHz from the Rb line center. The equation fitting is
done using Mathematica and I am confident in my implementation as I have
analyzed some of Munir’s Faraday rotation data with my program and arrived
at the same answer that Munir calculated.

Faraday Rotation PRb

The formula that I use to calculate the polarization is

PRb = C
a

LnRb
(1.4)

Where the variables have the following meanings, and the units are chosen such
that the polarization is reported as a decimal number with 1 being 100 percent.

a = a fitting parameter, see below

C = collection of polarization constants, see below

L = the length of the cell (cm)

nRb = rubidium number density (particles/cm3)

The fitting parameter a is the slope of the fit to the linear relationship
between the inverse of the probe detuning δpr. and the Faraday rotation angle
∆θ.

∆θ =
PRbLnRb

C

1

δpr.
(1.5)

δpr. = Detuning of the probe laser (GHz)

∆θ = θ − θB(rad.)

θ = pr. laser angle of linear polarization while pumping (rad.)

θB = pr. laser angle of linear polarization B field applied (rad.)

We let

a = PRb
LnRb
C

(1.6)

and solve for PRb to find Eq. 1.4
The constant C is a collection of constants that will not change during the

course of the experiment. It is

C =
4× 109 Hz

rec

1

fge
= 1.38323× 1012cm−3

To calculate my polarization, I collect data at four different probe laser
detunings, -30, -15, 15, and 30 GHz from the Rb line center. I have analyzed
some of Pirbhai’s data with my code and our calculations agree to around 6%.
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Electron Polarization

I calculate my electron polarization using a Helium optical polarimeter. Elec-
trons excite Helium atoms causing light to be emitted, the polarization of which
is related to the incident electron polarization. The electron polarization is cal-
culated from the stokes components of the light through the relation

Pe = P3

(
2.6409

1.0614 + 0.9386P1

)
(1.7)

as determined by Pirbhai [4].

Electron Polarization Analysis

The process of measuring the electron polarization is similar to collecting Fara-
day Rotation data because we must also rotate an optical element and collect
the intensity of light at a number of positions. The intensity data is first back-
ground subtracted, then the Fourier coefficients of the light intensity versus
optical element angular position are calculated.

These coefficients, in combination with the initial positions of the pass axis
of the optical elements, are used to determine the polarization of the Helium
fluorescence. Based on the polarization of the Helium fluorescence, we can then
calculate the polarization of the electrons.

The process of obtaining an electron polarization measurement is outlined
here, but is a replication of the analysis performed by Berry et. al [1]:

1. First collect data recording intensity and QWP position from N equally
spaced positions of the QWP. N should be no less than 16 to ensure
oscillations at all necessary frequencies are available. (Collect Data)

2. Normalize the data. At a minimum, the count rate should be divided
by the current on the Faraday cup. Another component of normalizing
might be removing background. The resultant value is then called the
signal. (Normalize Polarization Data)

3. Fourier Analyze the signal to obtain the coefficients of the C0, C2, S2, C4,
S4 functions. (Fourier Analyze Data)

4. Use these Fourier coefficients with the initial position of the linear polarizer
and quarter-wave plate to calculate the stokes parameters of the Helium
fluorescence (Calculate Stokes From Fourier Data)

5. Use the stokes parameters of the light to calculate the electron polariza-
tion. (Calculate Electron Polarization from Stokes)

I collect data at 16 different positions on the stepper motor. I previously
collected data with 60 data points, and developed these figures at that time.
The raw data looks something like Fig. 1.4.
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Figure 1.4: Displayed here are two sets of data, one that is exceptionally low
noise (a), the second is a more typical set of data (b). In both sets of data, the
fit is to the current-normalized intensity, while the displayed data points have
not been normalized to the current. The variation on the recorded current is
an order of magnitude higher in (b), resulting in the apparently poor fit.
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Figure 1.5: Item (a) is the “clean” data nd item (b) is the “typical” data.

We then normalize the current and subtract away the dark counts. See
Section 1.2.2 for details on this process. After normalizing the counts to the
current and subtracting the dark counts, the intensity should be somewhere in
the range of 5 to 20 Hz/nA. The data hasn’t changed much, but it looks like
Fig. 1.5.

We then Fourier analyze the data with a discrete Fourier transform, ob-
taining Fourier coefficients for all frequencies up to N/2. We can get a rough
idea of how noisy the data is by simply comparing the relative magnitudes of
the Fourier components. We expect the Fourier coefficients at frequencies of 2
and 4 to have the largest values. A visualization of the values of the Fourier
components is shown in Fig. 1.6.

With the Fourier coefficients, we calculate the Stokes parameters of the light.
These formulas are included here, reproduced from Berry (with the correction
of a typo):

P0 =Co −
1 + cos(δ)

1− cos(δ)
[C4cos(4α+ 4βo) + S4sin(4α+ 4βo)]

P1 =
2

1− cos(δ)
[C4cos(2α+ 4βo) + S4sin(2α+ 4βo)] /P0,

P2 =
2

1− cos(δ)
[S4cos(2α+ 4βo) + C4sin(2α+ 4βo)] /P0,

P3 =
C2

sin(δ)sin(2α+ 2βo)
/P0 =

S2

sin(δ)cos(2α+ 2βo)
/P0,

|P3| =
(C2

2 + S2
2)1/2

sin2(δ)
/P0

(1.8)
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Figure 1.6: Images (a) and (b) and the coefficients for the “clean” data and
images (c) and (d) are the coefficients for the “normal” data. Note that the
magnitude of the coefficients other than 2 and 4 relative to 2 and 4 are much
higher in c) and d). This is an indication of the noise in the data, according to
Berry.

For our two sets of data, the stokes parameters are shown in Fig. 1.7.
With the stokes parameters of the light, we can then determine the polar-

ization of the electrons using the equation that Munir cites in his thesis.

Pe = P3

(
2.6409

1.0614 + 0.9386P1

)
(1.9)

Carrying through the calculation, we find that each of these runs has an 8%
polarization.

To determine an error associated with this value, I collect multiple polariza-
tion runs, calculate the electron polarization for each run, and report the mean
as the electron polarization for the run. The standard deviation of the mean is
used as the error in the measurement.

Electron Polarization Background Subtraction

The process of subtracting background from the polarimeter follows that de-
veloped by Clayburn as written in his thesis [2]. I found some aspects of the
discussion and notation confusing, so I will reproduce it in my own words here.

A background measurement consists of a “beam off” background run and a
“gas off” background run. The “beam off” run measures the background that
comes from sources that are not related to the electron beam. The “gas off”
run measures background that comes from the electron beam, but is not part
of the helium fluorescence. The beam off intensity could also be thought of as
“dark counts” so I note these counts with the symbol D.

11



Figure 1.7: The stokes parameters for the two sets of data previously displayed.
Note that with the exception of P0 the values are very similar.

Dβ =

nD∑
i=1

Dβi

nDt
(1.10)

and it’s error which is

δDβ = ±

(
nD∑
i=1

Dβi

n2Dt
2

) 1
2

(1.11)

Where

nD = number of dark count measurements

t = time over which each measurement was collected

β = angular position of the polarimeter reatarder

These dark counts will be present in any data we collect, so they will be
subtracted from the next intensity that we measure from the “gas off” or electron
beam dependent counts. Since the dark counts are not dependent on current,
we should subtract the dark counts from the beam dependent counts before we
normalize with current.

We give the beam dependent intensity the symbol B and we write this
symbolically as

Bβ =

nB∑
i=1

(
Bβi/t−Dβ

nBIβ

)
(1.12)

δBβ = ±

(
nB∑
i=1

Bβi/t
2 − (δDβ)2

n2BI
2
β

) 1
2

(1.13)
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Here nB is used in the same sense as in Eq. 1.10, and the variable Iβ represents
the magnitude of the current collected on the Faraday cup at the time of the
count measurement. We now have in B the intensity of the background.

Now for removing the background from the measurement M . Again, we
first subtract the dark count rate from the raw measurement count rate. We
then normalize with respect to the current. After this normalization, the back-
ground intensity can be subtracted from the measurement. I then have S the
background removed signal which we can analyze to determine the polarization
of the light.

Sβi =

(
Mβi/t−Dβ

Iβ
−Bβi

)
(1.14)

δSβi = ±

(
Mβi/t

2 − (δDβ)2

I2β
− (δBβ)2

) 1
2

(1.15)

Note that I do not average the signal counts at this point. Instead, I calculate
the electron polarization for each run, and

1.3 Results

Here are the linear fits of all of the data:

1.3.1 200 mTorr

The data collected at 200 mTorr is shown in Fig. 1.8.

1.3.2 400 mTorr

The data collected at 400 mTorr is shown in Fig. 1.9.

1.3.3 800 mTorr

The data collected at 800 mTorr is shown in Fig. 1.10 for N2. There is no
corresponding data for C2H4 as the viewport became blocked to quickly to
collect any data.

1.3.4 Munir Recreation (Ei=2 eV, 200 mTorr N2))

One difference between the majority of the spin transfer data I have collected
here and the data that Munir collected is the incident energy of the electrons,
Ei. I typically collect data at Ei=100 eV because much higher currents can be
achieved with the higher incident electron energy. I decided to collect additional
data at the lower incident energy to verify that this difference isn’t the cause of
our low efficiency values. Fig. 1.11 shows the results.
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Figure 1.8: The spin transfer efficiency data for at 200 mTorr. The top graph
labeled a) shows the N2 data while the bottom graph b) shows the C2H4 data.
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Figure 1.9: The spin transfer efficiency data for at 400 mTorr. The top graph
labeled a) shows the N2 data while the bottom graph b) shows the C2H4 data.
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Figure 1.10: The spin transfer efficiency data for N2 at 800 mTorr.

Figure 1.11: Spin transfer efficiency data collected with an incident electron
energy of 2 eV. The buffer gas pressure was 200 mTorr for these measurements.

16



bgt bgp low mid high lowd midd highd
ethene 200 0.1 0.101 0.116 3 12 35

nitrogen 200 0.072 0.091 0.065 2.6 10 25
ethene 375 0.1 0.111 0.061 2 7 23

nitrogen 375 0.117 0.124 0.081 2.2 8 16
nitrogen 780 0.059 0.066 0.065 3.8 10 17

nitrogen (2eV) 200 0.046 0.075 0.076 1.4 10.6 27

Table 1.2: The calculated slopes for each of the spin transfer efficiencies pre-
sented in this document. The buffer gas type (bgt), and buffer gas pressure
(bgp) in mTorr are listed first. Because obtaining the exact same density with
our system is difficult, the data were not collected at the exactly the same buffer
gas pressures from run to run. I group them according to the closest target den-
sity (low=3× 1012, mid=10× 1012,high=30× 1012). The measured densities in
each run are then listed in units of 1× 1012 atoms

cm3 .

1.3.5 Tabular Data

The calculated slopes for the datasets each of the datasets are presented in
tabular form in Table 1.2.

1.4 Discussion

The spin transfer efficiency data lacks a clear indication on the effect of either
buffer gas pressure or nRb on spin transfer efficiency. A statistical difference
between the slopes is present, but the underlying data is sufficiently noisy to call
into question the validity and utility of that difference. The clearest conclusion
is that an intermediate number density appears to maximize the spin transfer
efficiency. This is what we anticipated when we began collecting data, but we
expected a different reason for this optimal density.

Unfortunately, a lower Ei was not the panacea to our low polarization issues.
The spin transfer efficiencies are low and the data collected at Ei=2 eV has more
noise than the Ei=100 eV data.

While collecting the Ei=2 eV data, I also observed an unexpected depen-
dence of transmitted current on pump laser detuning. I recorded more current
on the Faraday cup when the pump laser was tuned to the D1 line of Rb.
This increase in current was a function of the Rb density in the system. The
corresponding data is shown in Fig. 1.12.
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Figure 1.12: Average current measured on the polarization run. There is a
dependence on both the pump laser detuning and nRb. The effect is most
pronounced at nRb=27× 1012, but a small effect can be seen when nRb=10.6×
1012. The effect appears to be completely absent when nRb=1.4× 1012
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Chapter 2

Appendix

2.1 Dale’s Notes
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2.2 Constants

Here is a list of the physical constants that I used and their numerical values.

h = 6.6261 ∗ 10−27 cm2 ∗ g

s
νo = 377107.463 GHz

L = 3 cm, for collision cell, OR 7 cm, for pyrex cell

L = (after 2020-01-28)3 cm, for collision cell, OR 7 cm, for pyrex cell

re = 2.8179 ∗ 10−13 cm

c = 2.99792458 ∗ 1010
cm

s
fge = 0.34231

κ =
4

3

µB = 9.2740 ∗ 10−21 g cm2

s2 G

Here is a list of system parameters that are used

α = Angular position of the pass axis of the linear polarizer

β = Starting angular position of the pass axis of the polarimeter QWP

δ = Retardance of the QWP in the polarimeter

And their values
α = 20.4o

β = 68.7o

δ = 94.54o
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