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z Region I (oo <z <0) : ¥;(z) = Aexp(ikz) + B exp(—ikz) where k = Cz;L”E

Region I (0 <z < a): V;/(z) = Cexp(ikox) + D' exp(—ikoz) where kg = @

9]

Region III (a <& < 00): Wpyy(z) =’,E‘éxp(z’k1x) where k; = V2em(BVy)

"
b)
2 A+B=C+D
) k(A — B) = ko(C — D)
L Cexp(ikoa) + D exp(—ikoa) = E exp(ikia)
b koCexp(ikoa) — koD exp(—ikoa) = ki E exp(ikya)
c)
------ . hk . hk . Rk, ©
S ji(@) = — (|AP = 1BP*) , ju(z) = EQ (IC1* = IDP) | juur(z) = %IEIQ

and therefore, using the equality between j; (x) and jrrr(2):
F
8 E(AP —BP) = ky P

. Dividing both sides by k|A|? we get:

(
Y

B

A

e 1—‘§zzﬁ :

A k

That allows for the identifications of T' = % ’% ‘2 and R = I%'z’ as transmission and reflection
probabilities, respectively.
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EM problems

1. An infinite plane of a uniform surface charge density oy is placed at distance z =/ above the
surface of a half-space grounded metal.

(1) Find the potential and the electric field in all space.

(2) Find the induced surface charge density on a metal surface.

Solution:

(1) The solution can be obtained using a method of images. An image charge plane is located at
z =—h below the surface of a metal and has charge —oo per unit area. The electric file produced

by the two planes of charge is uniform between the planes and is equal to E = ~%05 . Above the
80

5 plane of charge, z > &, the electric field is zero. Since E=—-V® , we find that between the

o lof .
planes the potential is ®(z) =—2z+ C, where constant C must be equal to zero in order to have
o
zero potential on the grounded metal surface. Above the plane of charge the potential is constant

and is equal to @(z) = 0. Thus,
o
O(z)=0; E=0; z<0
q)(z)zﬂz; Ez—ﬁi; O<z<h, 5+5+5 (1)
€o o
d(z)=20n E=0; z>h
€
at z=0and z = & the potential is continuous, while the electric field is discontinuous.

(2) The induced surface charge density o on a metal surface is given by

o .
Eabove - Ebelow =—n, 5 (2)
€0
E ... 1s the electric field above the metal surface, E, ;,,, is the electric field below the metal

surface, and n = Z is normal to the surface. From Eqgs. (1) and (2), we find that o = —0,.



2. A flat surface z = 0 of a semiinfinite linear dielectric material of uniform dielectric permittivity
¢ is affected by an external non-uniform electric field whose magnitude and direction in the
absence of the dielectric is E'(r). There are no free charges in the dielectric. Find the induced

surface polarization charge density o, (r). For this purpose:

(1) show that the normal component of the polarization-induced electric field E’(r) near the

o,(r)

surface inside the dielectric is given by E”(r)=— 5 ;
€y

(2) express o,(r) is terms of the total electric field at the surface;

(3) solve the problem using (1) and (2).

Solution:

(1) Electrostatic boundary conditions state that the normal component of the electric field

. o(r . .
experiences a step of o) when crossing the surface. Since there are no free charges, the
€y
surface charge density o(r) is equal to the surface polarization charge density o,(r). Since the
surface is a plane, by symmetry and according to Gauss’s law, the normal component of the
polarization-induced electric field above and below the surface must by equal in magnitude but

pointing in the opposite directions. Therefore E” (r) = —JZP—(r) 5
80
(2) The surface polarization charge density is given by
o,(r)=P-n 5

where n is the normal to the surface. Polarization P is a linear function of electric field so that
P=(e-¢,)E.
Therefore we find:

5

where E_ is the normal component of the total electric field inside the dielectric near its surface.

z 2

op(r)=(c—¢))E

(3) The total electric field is the sum of the external field and the field produced by polarization
charge E=E" + E* . Therefore, we have:

O-P :(8—80)EZ :(5_80)(EZP + Ezext) :(8_80){_%‘{’ Ezextj 7
0
Solving this equation with respect to o, we find:
£

o, (r) = 2¢, :0 E*(r) 3
0



3. An electric circuit represents two concentric metal spheres of radii a and b, with b > a, serving
as electrodes, and a homogeneous material of conductivity o between the spherical electrodes.
Find the resistance R of this material.

Solution:

Under the application of bias voltage V' between the electrodes, an electric current / will flow

between them. According to Ohm’s law current density is given by J(r)=0oE(r). 5By

symmetry both J and E are pointing along r and can depend only on r,2 and hence the total
electric current across a surface of radius 7, such that b > r > a, is given by

I =J(r)4nr’ =4rcr’E(r) 5
It is independent of » by current continuity (charge conservation) condition.

We therefore have for the electric field:

Ery=—1>_.2

dror?

On the other hand, the potential and the field are related as follows:

f T I (11
v =[E(r)dr= dr=—r|-—2|8
-{[ (r)dr J.47z0'r2 ' 47[0'(a bj

a
The resistance is therefore:

R:K:Lb_a_
I 4rno ab




4. Find the self-inductance L per unit length for an infinitely long coaxial cable of radii a, b with
a < b, carrying a current /, as shown in in the figure.

b

_ O\L}J‘ _________

Solution:
: : L’ 3
The self-inductance L is related to the energy W as follows: W = -

The magnetostatic energy is given by
W=t [B2a'r 3
24

The magnetic field can be found from Ampeére’s law. Integrating over circle of radius s
(b>s>a), we obtain:

fIB-di=275B=p,l,

I -
and hence B = ’uLd). 8
27rs

The energy of the system of length / is then:

b 2 20 2

1 1 1

w=I ! J-(—ﬂo jZﬂ'SdSZZ—'uO jldS:l—ﬂ0 lné. 3
2,9\ 27s dr 2 s dr  a

The self-inductance per unit length is then:

£:2—Wz/:ﬂlné. 3
[l 27 a



5. An electric field has a wave form E(z,7)=EXcos(kz)cos(wt). (1) Using Maxwell’s
equations, find the magnetic field B(z,¢). Then, find (2) Poynting’s vector S and (3) time-
averaged Poynting’s vector <S> . (4) What conclusion about the wave intensity can be made from

the latter result? What kind of wave does the given electric field represent?

Solution: (1) The relevant Maxwell’s equation are VxE = —‘Z—B 2 and VxB = LZZ—E 2 From
t c” ot

the first equation, we have:

X y 1z

~OE_ . OF .

VxE = 9 9 9 :ya * —za * = —FE ky sin(kz) cos(wt) :—a—B, 4

ox Oy oz oz oy ot

E 0 0

which implies that only B, (z,f) component is non-zero. From the second equation, we obtain:

0B, 10E_ o,

= =—F —xcos(kz)sin(wt 4
0z ¢t ot e (kz)sin(@t)

VxB=

o Pl w
5o o
() g)|Q) N>

Taking into account @ = kc , we therefore have:

OB

Y _ F, Qsin(kZ) cos(wt), 2
ot ¢
OB k .

L = E,—cos(kz)sin(wt).
0z c

These two equations are consistent when
E . . )
B = —2ysin(kz)sin(wr) 2
c

(2) Poynting’s vector is

S= LE xB = 1 E, cos(kz) cos(wt)—>sin(kz) sin(wrt) (X x § ) = —"—sin(2kz) sin(2wt)Z 5
Hy Hy ¢ 4utc

(3) Time-averaged Poynting’s vector is <S> =0, because the average of sine over an entire cycle

1S zero. 2

(4) Since time-averaged Poynting’s vector determines intensity of an electromagnetic wave, we
can conclude that no intensity is transmitted along the z direction is zero. Hence, the given

electric field represents a stationary (standing) wave. 2



6. Two plane electromagnetic waves propagate in z direction and have the form

]31 (r,t) — &Eoeikz—iwtﬂ(pl ,
E2 (r, t) — yEOeikz—ini(pz ,

where X and y are unit vectors in x and y directions respectively and Eo is a real amplitude.

1.

What relationship should @1 and ¢> obey to make the superposition of these two waves,
E(r,t)=E (r,t)+E,(r,?), a linearly polarized wave? What is the angle of the polarization

plane of this superposed wave with respect to the x axis? Write down the x- and y-
components of the resulting electric field in form of the real part of E .

What relationship should ¢; and @> obey to make this wave circularly polarized with
positive (negative) helicity? Write down the x- and y-components of the resulting electric
field in form of the real part of E .

Solution:

(1) The wave is linearly polarized if it can be represented as E(r,t) = E,ee’™" ", where e is the
(real) polarization vector. In our case,

E(X,t) = Fj1 +E2 = EO [ﬁ_}_yei(WZ_Wl):'eikZ—iwt-#(pl ) 8

Therefore, we have e =%+ ye'>™?’ . For the vector e to be real, we need to have the same phase,

i.e. 1 = @2. The polarization vector in this case is e = X+y, and the angle of the polarization plane
of this superposed wave with respect to the x axis is given by

:9=tan"l=£. 5
4

The x- and y-components of the resulting real electric field are given by

E (r,t)=E,cos(kz—iot+¢,).

E (r,t) = E, cos(kz —ict + ¢,) 6 ignore i

(2) The condition for circular polarization is e, =e_*ie , for positive and negative helicity

respectively. In our case, e = X+ ye'>?, and therefore the superposed wave must have

O, —@ = i% . The x- and y-components of the resulting electric field are therefore

E (r,t)=E,cos(kz—awt+¢,),

E,(r,0)=FE,sin(kz—ot+g), O

for the wave of positive and negative helicity, respectively.
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