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EM problems 
1. An infinite plane of a uniform surface charge density σ0 is placed at distance z h=  above the 
surface of a half-space grounded metal.  
(1) Find the potential and the electric field in all space. 
(2) Find the induced surface charge density on a metal surface.    
 
Solution: 
(1) The solution can be obtained using a method of images. An image charge plane is located at 
z h= −  below the surface of a metal and has charge –σ0 per unit area. The electric file produced 

by the two planes of charge is uniform between the planes and is equal to 0

0

ˆσ
ε

= −E z . Above the 

5 plane of charge, z h> , the electric field is zero. Since = −∇ΦE , we find that between the 

planes the potential is  0

0
( )z z Cσ

ε
Φ = + , where constant C must be equal to zero in order to have 

zero potential on the grounded metal surface. Above the plane of charge the potential is constant 

and is equal to 0

0
( )z hσ

ε
Φ = . Thus, 

0 0

0 0

0

0

( ) 0; 0; 0

ˆ( ) ; ; 0

( ) ; 0;

z z

z z z h

z h z h

σ σ
ε ε
σ
ε

Φ = = <

Φ = = − < <

Φ = = >

E

E z

E

,       5+5+5 (1) 

at 0z = and z h= the potential is continuous, while the electric field is discontinuous.  

(2) The induced surface charge density σ on a metal surface is given by   

0
ˆabove below

σ
ε

− =E E n ,             5 (2) 

aboveE  is the electric field above the metal surface, belowE  is the electric field below the metal 
surface, and ˆ ˆ=n z  is normal to the surface. From Eqs. (1) and (2), we find that 0σ σ= − .  
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2. A flat surface z = 0 of a semiinfinite linear dielectric material of uniform dielectric permittivity 
ε is affected by an external non-uniform electric field whose magnitude and direction in the 
absence of the dielectric is ( )extE r . There are no free charges in the dielectric. Find the induced 
surface polarization charge density ( )Pσ r . For this purpose:  

(1) show that the normal component of the polarization-induced electric field ( )P
zE r  near the 

surface inside the dielectric is given by 
0

( )( )
2

P P
zE σ

ε
= −

rr ;  

(2) express ( )Pσ r  is terms of the total electric field at the surface;  

(3) solve the problem using (1) and (2).   
 

Solution: 
(1) Electrostatic boundary conditions state that the normal component of the electric field 

experiences a step of 
0

( )σ
ε

r  when crossing the surface. Since there are no free charges, the 

surface charge density ( )σ r  is equal to the surface polarization charge density ( )Pσ r . Since the 
surface is a plane, by symmetry and according to Gauss’s law, the normal component of the 
polarization-induced electric field above and below the surface must by equal in magnitude but 

pointing in the opposite directions. Therefore 
0

( )( )
2

P P
zE σ

ε
= −

rr . 5 

(2) The surface polarization charge density is given by 

( )Pσ = ⋅r P n 5 

where n is the normal to the surface. Polarization P is a linear function of electric field so that   

( )0ε ε= −P E . 

Therefore we find:  

( )0( )P zEσ ε ε= −r ,   5 

where zE is the normal component of the total electric field inside the dielectric near its surface.   
(3) The total electric field is the sum of the external field and the field produced by polarization 
charge P ext= +E E E . Therefore, we have:  

( ) ( )( ) ( )0 0 0
02

P ext extP
P z z z zE E E Eσσ ε ε ε ε ε ε

ε
 

= − = − + = − − + 
 
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Solving this equation with respect to Pσ  we find: 

0
0

0

( ) 2 ( )ext
P zEε εσ ε

ε ε
−

=
+

r r  3 
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3. An electric circuit represents two concentric metal spheres of radii a and b, with b > a, serving 
as electrodes, and a homogeneous material of conductivity σ between the spherical electrodes. 
Find the resistance R of this material. 
 
Solution: 
 
Under the application of bias voltage V between the electrodes, an electric current I will flow 
between them.  According to Ohm’s law current density is given by ( ) ( )σ=J r E r . 5By 

symmetry both  J  and E  are pointing along r̂  and can depend only on r,2 and hence the total 
electric current across a surface of radius r, such that > >b r a , is given by  

2 2( )4 4 ( )π πσ= =I J r r r E r   5 

It is independent of r by current continuity (charge conservation) condition. 

We therefore have for the electric field: 

2( )
4πσ

=
IE r

r
. 2 

On the other hand, the potential and the field are related as follows:  

2

1 1( )
4 4πσ πσ

 = = = − 
 ∫ ∫

b b

a a

I IV E r dr dr
r a b
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The resistance is therefore: 

1
4πσ

−
= =

V b aR
I ab

. 3 
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4. Find the self-inductance L per unit length for an infinitely long coaxial cable of radii a, b with 
a < b, carrying a current I, as shown in in the figure.  

a
b

I
I

 
Solution: 

The self-inductance L is related to the energy W as follows:
2

2
=

LIW  3 

The magnetostatic energy is given by  

2 3

0

1
2µ

= ∫W B d r  3 

The magnetic field can be found from Ampère’s law. Integrating over circle of radius s 
( > >b s a ), we obtain:  

 02π µ⋅ = =∫ d sB IB l ,  

and hence 0 ˆ
2
µ
π

=
I
s

B φ .       8 

The energy of the system of length l is then:  
2 2 2

0 0 0

0

1 12 ln
2 2 4 4

µ µ µπ
µ π π π

 = = = 
 ∫ ∫

b b

a a

I I I bW l sds l ds l
s s a

.  8 

The self-inductance per unit length is then: 

0
2

2 ln
2
µ
π

= =
L W b
l lI a

. 3 
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5. An electric field has a wave form 0 ˆ( , ) cos( ) cos( )z t E kz tω=E x . (1) Using Maxwell’s 
equations, find the magnetic field ( , )z tB . Then, find (2) Poynting’s vector S and (3) time-
averaged Poynting’s vector S . (4) What conclusion about the wave intensity can be made from 
the latter result? What kind of wave does the given electric field represent? 

Solution: (1) The relevant Maxwell’s equation are 
t

∂
∇× = −

∂
BE  2 and 2

1
c t

∂
∇× =

∂
EB .2 From 

the first equation, we have: 

0

ˆ ˆ ˆ

ˆ ˆ ˆ sin( ) cos( )

0 0

x x

x

E E E k kz t
x y z z y t

E

ω∂ ∂∂ ∂ ∂ ∂
∇× = = − = − = −

∂ ∂ ∂ ∂ ∂ ∂

x y z
BE y z y , 4 

which implies that only By (z,t) component is non-zero. From the second equation, we obtain:  

02 2

ˆ ˆ ˆ
1ˆ ˆ cos( )sin( )

0 0

y

y

B
E kz t

x y z z c t c
B

ω ω
∂∂ ∂ ∂ ∂

∇× = = − = = −
∂ ∂ ∂ ∂ ∂

x y z
EB x x . 4 

Taking into account kcω = , we therefore have:  

0 sin( ) cos( )yB
E kz t

t c
ω ω

∂
=

∂
, 2 

0 cos( )sin( )yB kE kz t
z c

ω
∂

=
∂

.  

These two equations are consistent when 

0 ˆ sin( )sin( )E kz t
c

ω=B y .2 

(2) Poynting’s vector is  

( )
2

0 0
0

0 0 0

1 1 ˆ ˆ ˆcos( ) cos( ) sin( )sin( ) sin(2 )sin(2 )
4

E EE kz t kz t kz t
c c

ω ω ω
µ µ µ

= × = × =S E B x y z .5 

(3) Time-averaged Poynting’s vector is 0=S , because the average of sine over an entire cycle 

is zero. 2 

(4) Since time-averaged Poynting’s vector determines intensity of an electromagnetic wave, we 
can conclude that no intensity is transmitted along the z direction is zero. Hence, the given 

electric field represents a stationary (standing) wave. 2  
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6. Two plane electromagnetic waves propagate in z direction and have the form 
1

1 0ˆ( , ) ikz i t it E e ω ϕ− +=E r x , 
2

2 0ˆ( , ) ikz i t it E e ω ϕ− +=E r y , 

where x̂  and ŷ  are unit vectors in x and y directions respectively and E0 is a real amplitude.   

1. What relationship should ϕ1 and ϕ2 obey to make the superposition of these two waves, 
1 2( , ) ( , ) ( , )t t t= +E r E r E r , a linearly polarized wave? What is the angle of the polarization 

plane of this superposed wave with respect to the x axis? Write down the x- and y-
components of the resulting electric field in form of the real part of E . 

2. What relationship should ϕ1 and ϕ2 obey to make this wave circularly polarized with 
positive (negative) helicity? Write down the x- and y-components of the resulting electric 
field in form of the real part of E .     

Solution: 

(1) The wave is linearly polarized if it can be represented as ( )
0( , ) i tt E e ω ϕ⋅ − += k rE r e , where e is the 

(real) polarization vector. In our case, 

2 1 1( )
1 2 0 ˆ ˆ( , ) i ikz i tt E e eϕ ϕ ω ϕ− − + = + = + E x E E x y . 8 

Therefore, we have 2 1( )ˆ ˆ ie ϕ ϕ−= +e x y . For the vector e to be real, we need to have the same phase, 
i.e. ϕ1 = ϕ2.  The polarization vector in this case is ˆ ˆ= +e x y , and the angle of the polarization plane 
of this superposed wave with respect to the x axis is given by  

1tan 1
4
πθ −= = . 5 

The x- and y-components of the resulting real electric field are given by  

0 1( , ) cos( )xE t E kz i tω ϕ= − +r . 

0 1( , ) cos( )yE t E kz i tω ϕ= − +r         6 ignore i 

(2) The condition for circular polarization is x yi± = ±e e e , for positive and negative helicity 

respectively. In our case, 2 1( )ˆ ˆ ie ϕ ϕ−= +e x y , and therefore the superposed wave must have 

2 1 2
πϕ ϕ− = ± . The x- and y-components of the resulting electric field are therefore 

0 1( , ) cos( )xE t E kz tω ϕ= − +r , 

0 1( , ) sin( )yE t E kz tω ϕ= − +r  , 6 

for the wave of positive and negative helicity, respectively.  
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