A1 Calculate the thermal energy of 1 mol of Cu at $T = \theta_D$ using the classical theory. (for Cu, $\theta_D = 340$ K)

The thermal energy for each degree of preedom is

$$U(T) = \frac{1}{2} UBT$$

A solid has & 6 degrees of preedom (3 x translation,
3 x rotation) to the thermal energy is

 $U(T) = 3 N UBT = 3 N M M UBT = 3 N RT$

For 1 mol (n = 1 mol) and $T = \theta_p = 340 M$

We hind for the energy:

 $U(T) = 3RT = 8480.80 \frac{7}{mol}$

Note: 3kT comes from the three vibrational degrees of freedom, Cu atoms don't rotate.

A2. A hot wire at 3200 K 80 μ m across and 5 cm generates how much heat (write this as power dissipation):

Assuming is a black body

$$S = \sigma T^{4}$$

$$P = SA = \sigma T^{4}(2\pi r l)$$

$$= (2\pi) \left(5.6703 \times 10^{-8} \frac{Watts}{m^{2} \cdot K^{4}}\right) (3200K)^{4} \left(\frac{0.080 \times 10^{-3} m}{2}\right) (5.0 \times 10^{-2} m)$$

$$= 74.7 Watts$$

A3. 300 g of aluminum block at 100 °C is place in a calorimeter cup with 400 g of water. The mass of the copper calorimeter cup is 80 g. The initial temperature of the water and the cup is 22 °C. What's the final temperature?

Solution: The heat input of the water and cup is the same as the heat output of the aluminum block. Assuming the final temperature is T:

$$\begin{array}{l} (90\text{-T}) \; C_{Al} = & (T\text{-}22) \; (C_{water} + C_{copper}) \\ C_{Al} = & 0.3 * 0.904 = 0.2712 \; kJ/K \\ C_{water} = & 0.4 * 4.184 = 1.674 \; kJ/K \end{array}$$

 $C_{copper} = 0.08*0.385 = 0.0308 \text{ kJ/K}$

Hence: T=32.7 °C

A4. In a vacuum tube of pressure 1.333×10⁻³ Pa, at 27 °C, calculate 1) number of gas particles per m³, 2) volume occupied per particle, 3) average distance between particles.

Solution:

- 1) Using PV=nRT or PV = Nk_BT, one can calculate the particle density $N/V = P/k_BT = 3.22 \times 10^{17}/m^3$.
- 2) Volume occupied per particle is: V/N=3.11×10⁻¹⁸/ m³
- 3) Average distance is $(V/N)^{1/3}=1.46\times10^{-6}$ m
- B1. An object with constant heat capacity C is initially at temperature T_1 . It is brought into contact with a heat reservoir at temperature T_R , where $T_R < T_1$.
- a) Find the entropy change of both the object and the reservoir.
- b) Show that the total change in entropy is consistent with the second law of thermodynamics.

$$\begin{split} \Delta Sbody = & \langle int \ C \ dT/T = C \ ln(T_R/T_1) \ (<0) \\ \Delta Sres = & C(T_1 - T_R)/T_R \ (>0) \\ \Delta Stotal = & C \ ln(T_R/T_1) + C(T_1/T_R - 1) \end{split}$$

 $x=T_1/T_R>0$ x-1-ln x>0, therefore $\Delta Stotal>0$.

B2. One mole of diatomic ideal gas ($C_V = 2.5 \text{ nR}$) performs a transformation from an initial state for which temperature and volume are, 291 K and 21,000 ml to a final state in which temperature and volume are 305 K and 12,700 ml. The transformation is represented on the (V, P) diagram by a straight line. Find the work performed and the heat absorbed by the system.

Solution:

	Initial	Final	Change
P (Pa)	1.15E5	2E5	0.85E5
V (m^3)	21E-3	12.7E-3	-8.3E-3
T (K)	291	305	14

A straight line in (P,V) diagram:
$$P = P_1 + \frac{\Delta P}{\Delta V}(V - V_1),$$

$$W = \int P dV = \int \left[P_1 + \frac{\Delta P}{\Delta V}(V - V_1) \right] dV = \left(P_1 - \frac{\Delta P}{\Delta V}V_1 \right) \Delta V + \frac{1}{2}\Delta P(V_1 + V_2) = -1307 \text{ J}$$

$$\Delta U = \text{CV}\Delta T = 290 \text{ J}$$

$$Q = \Delta U + W = -1017 \text{ J}$$

B3. Show that, for ideal gas, if the heat capacity of a process is constant, then the process is polytropic $PV^l = C$. Assuming that Cp and Cv are constant.

```
Solution: dU = CndT-PdV

(Cv-Cn)dT = -PdV=-nRTdV/V

(Cv-Cn)dT/T = -nRdV/V

(Cv-Cn)dnT = nRdlnV

(Cv-Cn)dlnT = nRdlnV

(Cv-Cn)dlnT = nRdlnV

(Cv-Cn)dlnT^{Cv-Cn} + dlnV^{nR} = 0

(Cv-Cn)dlnT^{Cv-Cn}
```

B4. A diatomic gas ($C_V = 2.5 \text{ nR}$) expands adiabatically to a volume 1.35 times larger than the initial volume. The initial temperature is 18 °C. Find the final temperature.

Saturday, May 8, 2021 08:47

$$U(t) = U_{0} + d - = \left(\frac{\Gamma}{T}\right) + \frac{\Gamma}{T} = \frac{\Gamma \cdot \Gamma}{U} = \frac{\Gamma}{U} = \frac$$

(b)
$$T_{4} = \frac{1}{4} = \frac{(\frac{25}{4} \text{ Win}^{2})(\frac{1}{40 \text{ S}})(\frac{1}{100})}{(\frac{25}{400})(\frac{1}{100})}$$

$$= \frac{25}{6} \text{ N·m}$$

1 of 1 5/10/2021, 1:02 PM

r

Problem A.1

Saturday, May 8, 2021 8:04 AM

rass m

(at release)

apply conservation of moneum to

sleps: apply conservation of chees to combined

$$= \frac{1}{28} = \frac{1}{28} \left(\frac{1}{2} \right)^{2}$$

Problem A.2

Saturday, May 8, 2021 08:11

1 of 1 5/10/2021, 12:33 PM

Problem A.3

Saturday, May 8, 2021 08:11

$$v(x) = \beta \bar{x}^{n}$$

$$a = \frac{dv}{dt} = \frac{dv}{dx} \frac{dx}{dt} = v(x) \frac{dv}{dx}$$

$$\frac{dv}{dx} = -\beta_{n} x^{n-1}$$

$$a(x) = v(x) \frac{dv}{dx}$$

$$a(x) = -\beta^2 n x^{-2n-1}$$

Problem A.4

Saturday, May 8, 2021 08:11

Conservation of energy:
$$DE = \omega = 0$$

$$E_{-} = ngh = ng(0.82)$$

1 of 1 5/10/2021, 12:33 PM

Saturday, May 8, 2021 08:46

(b)
$$7 = \frac{1}{2} m (\omega v)^2$$

What = Warmen + Whath =
$$\sqrt{37}$$

$$= \frac{1}{2} m (uv)^2 - \frac{1}{2} m u^2$$

$$= \frac{1}{2} mv^2 + muv$$

$$= \frac{1}{2} muv^2 + muv$$

$$= \frac{1}{2} muv^2 + muv^2$$

$$= \frac{$$

 \bigcirc

Saturday, May 8, 2021 08:46

$$L = T - U$$

$$= \left(\frac{1}{2}mr^2 + \frac{1}{2}mr^2\dot{\theta}^2\right) - \left(\frac{1}{2}k(b-r)^2 - msrcos\Omega\right)$$

Enler - Legrange:
$$\frac{\partial L}{\partial q} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) = 0$$

$$\ddot{r}: \frac{\partial \mathcal{L}}{\partial r} = mr\dot{\theta}^2 + k(br) + mgcos\theta$$

$$\frac{\partial}{\partial t} \left(\frac{\partial \mathcal{L}}{\partial r} \right) = \frac{\partial}{\partial t} \left(mr \right) = m\ddot{r}$$

$$\frac{\partial \mathcal{L}}{\partial \theta} = -mgrsin\theta$$

$$\frac{1}{4} \left(\frac{\partial \mathcal{L}}{\partial \dot{\theta}} \right) = \frac{d}{4} \left(nr^2 \dot{\theta} \right) = mr^2 \ddot{\theta} + 2mr^2 \dot{\theta}$$

rö + drið + grsing = 0

Saturday, May 8, 2021 08:47

- (a) 5 equil.bohm goints

 X. X. X. A. are stable

 X. X. X. are anabable
- (b) Need lorge enough DT so that

 Ex +DT DE3

 Cork don on new

 Yourk-enersy bleasen

 The DTD E3-E2
- Let toke energy of persolal be Ethen it follows from consontion of energy that $E: E_0 + \frac{1}{2}m^2$ $V = \int_{-\infty}^{\infty} (E E_0)$
- (d) $U(x) = -x^{-2} bx^{-1}$

