EM problems

Al.. An infinite plane of a uniform surface charge density oy is placed at distance z =/ above
the surface of a half-space grounded metal.

(a) Find the potential and the electric field in the whole space.

(b) Find the induced surface charge density on a metal surface.

Solution:

(a) Ehe solution can be obtained using a method of images. An image charge plane is located at
z =—h below the surface of a metal and has charge —oy per unit area. The electric file produced

% Po[ nts by the two planes of charge is uniform between the planes and is equal to E = ~ %05 . Above the
&y

plane of charge, z > /&, the electric field is zer?JEince E=-VO, we find that between the

.o O . ;
planes the potential is ®(z) = —%z + C, where constant C must be equal to zero in order to have
€0

zero potential on the grounded metal surface. Above the plane of charge the potential is constant
and is equal to d(z) =20y Thus, ] q PO N { S
€0
D(z)=0; E=0; z<0
D(z)=20z BE=-22% 0<z<h, (1)
€0 &y

o,
O(z)=-Lh, E=0; z>h
g
at z=0and z = Athe potential is continuous, while the electric field is discontinuous.

(b) The induced surface charge density o on a metal surface is given by

% o .

e Eabove - Ebelow =—n, (2)

E(//)ove
surface, and n =z is the normal to the surface. From eqs.(1) and (2) we find that o = -0 .

is the electric field above the metal surface, E,,,,, is the electric field below the metal



B1. A flat surface z=0 of a semiinfinite linear dielectric material of uniform dielectric permittivity ¢ is
affected by an external non-uniform electric field which is directed perpendicular to the surface and

whose magnitude in the absence of the dielectric is EEXt(r). There are no free charges in the dielectric.

(1) Show that the volume polarization charge density in the dielectric is zero;

(2) Show that the normal component of the polarization-induced electric field E!(r) near the

surface inside the dielectric is given by E'(r)= _2(n) where o, (r) is the induced surface po-
5‘0
larization charge density.

(3) Express o, (r) is terms of the total electric field at the surface;

(4) Express o, (r) in terms of E*(r).
Solution:

‘_(Ml) For a linear dielectric P and E are related by P = (g ¢, )E, where E is the total electric field

i the dielectric, Therefore st
' pen? FPI)Z_V'P=‘V'[(8~8O)E] j Z pts

¥s. ,
6 powe If the dielectric is uniform then (& —¢g,) is constant and thus can be taken out of the derivative:

[pp=—(s—go)v-E=—(g—;g°-)(pﬁw+pp)] ) F\’ S,

0

Thus, if there are no free charges and the dielectric is linear and uniform, the volume polarization
charge density is zero.

_ | point - .
(2) |Electrostatic boundary conditions state that the normal component of the electric field

. o(r : | poin |
experiences a step of o) when crossing the surface}(Smce there are no free charges ﬁle surface

6 VW\\ S &, -

charge density o(r) is equal to the surface polarization charge density O'P(l‘)]{“ Since the surface

is a plane and there are no polarization charges in the bulk, by symmetry the normal component 2 pore
of the polarization-induced electric field above and below the surface must by equal in

L wn o R : o,(r) -
magnitude but pointing in the opposite dlrectlonﬁhherefore El(r) =®% J \ Y”Z] " ( [ P -
' 2 o —2n ~ Lkin " ey
(3) The surface polarization charge density is given by | % (owksidd umsde Eo
6 \>(’) \ (\\'9 gp(r) =P-n PO | n
where n is the normal to the surface. Polarization P is a linear function of electric field so that i) poin fc

B P:(g—go)iE) l vﬂ';\eﬁ"l :"zf? s} P
Therefore we find: - . \
R P

where £ is the normal component of the electric field inside the dielectric near its surface.

| (4) The total electric field is the sum of the external field and the field produced by polarization
ﬁ’( ?m NS charge \E = E” + E“" ; Therefore we have:

l PO“\“X/
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LO’ —(e-5,) E. = (-2, )(E' + Eﬂ [(g g°)[O+E”'jJ

Solving this equation with respect to o, we find:

ol =2e 8°E“'<>1 A points




A2. A positive charge is distributed over a thin metal plate of infinite area and thickness d in
such a way that there is charge O per area 4 of the plate. Assuming that the bottom surface of the
plate lies at z = 0 and the top surface lies at z = d,

(a) Find the distribution of charge across the plate (along the z direction) and write the
expression for the volume charge density in all space;

(b) Find and sketch the electric field and the electrostatic potential along the z direction.

AZ
z=d
z0
Solution: y
§
(aXSmce the plate is infinite the charges dlstrlbuted uniformly over the area of the plate in such
\ O a way that produces zero electric field inside the metal]ﬁmce the charge density inside the metal
oL is zero, the only way to have zero electric field inside the metal is to have a uniform surface ‘\/,) syl
Q charge density o =(Q/24 on the top and bottom surfaces. These surface charge densities 5 V -

produce uniform electric fields pointing in the opposite directions inside the plate making the net
field equal to zexoiﬁn this case the volume chare density is given by

p(r)z%c?( )+—“ ] (X l\om <y

N

( (b) The electric ficld outside the plate is the same as the field produced by uniform plane charge

o; surface density o=0/4,1i.e. "
A ckaz O ‘ n\ '\/\.«v z/\d ) \ i m Ea /\J,». / s‘flm 11’ >
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H, = z, z > CZ, ’Z J‘!‘ / /\‘ . \ uA ( - 7
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O\x;\\’ E=- 0 z, z<0. j 2 P(Hn‘%g =
k 24g, ! o)
o
The electrostatic potential is determined from i
oD
E=-VD=—— PAssummG that the potential
) (oo sob 2040 0 d
\ is zero on the metal plate we ﬁncL( RN I
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B2.. A linearly polarized electromagnetic wave plane wave of frequency o, traveling in vacuum
in the z direction and polarized in the x direction, is reflected from a perfect conductor (i.e., a
conductor with infinite conductivity ) whose surface lies in the x -y plane. Write expressions for
the incident, transmitted, and reflected waves and using the boundary conditions for the electric
and magnetic fields show that the reflection coefficient is equal to 1.

Solution:
The electric and magnetic fields of the incident and reflected wave can be expressed as follows:

E (Z [):E,e/»(k]:—ml)ﬁj | ()()IV\( S .

é Q()\V\'\{’ B,(z, t)_—E e'th ‘”’))A/’ — |\ Po \n

4 [afnd the boundary condition B\ B“ leads to \ | —
p( 5 1Nk

B, (o) = D05, Mo.m
Br(Zaf):——Eo,.e@i/ﬁé_”’))”f, - A lxo\vx\ s

here k, =—. The electric and magnetic fields of the transmitted wave are
- ¢

E (1) = B ™%, 2 points

B,(Z,l) — %Emez(kzz‘m/)y , Q _ r\n In \ S

@ / g
[Whele k2 is a complex wave vector glven by ky=— |— and e=¢,+i— J L P() nt
. ¢ \é&

The boundary condition E“ E}zI results in B
By By, = By,

1 k
(EOI EOI ) = EO/ or EOI EO/ ﬂEO/ b
o )

e N ——
g Y J

where f=—k,. o porn 1S A prs.
®

— 2
Eol' = : ﬂ Eon Eo/ = E(), .
1+ p 1+ p

For a perfect ggnductm =0, , k, =0 and hence P=o. Therefme ]

Solving these equations we find:

E

EOI'Z"E 01 =0.

072

This implies that R =|—| =1.

0/




B3. Two small planar loops of wire of area S and > have normal unit vectors to their planes, n;
and my respectively, and are separated by radius
vector r, large compared to the size of the loops. n,

(a) Find the mutual inductance of the system.

(b) Assuming that n; and ny are parallel find the
angle between r and n; (n2) at which the mutual
inductance is zero.

(c) Sketch magnetic field lines with respect to the current loops, explaining the result (b).

Solution:

(a) Since the separation between the loops is large we can use the dipole approximation to for the
magnetic field. Using a unit vector r=r/r, the magnetic field due to loop S| at a position of

loop 2 is (€q.5.56 in the textbook): ( lorp wla < lre et )
| B(r) = Ao | rr-m)—m, | (5.1)
47 7
- g;nce for a planar loop m, = IS, , where [ is the current flowing the wire, we obtain
. L 3r(r-m,)—n
B(r) =0 s, [—%} . (5.2)
- 47 7 ( A Q,(
5 T A ; P e :”\ .,,‘ AN AL ; L
The flux crossing loop Sz is (¢ OMme B A (,(l‘ﬂ/«){f’ N ’ /)( Lo )
D L 3(F-n)(F-n,)—n, -n =
F=SBn, ::_70[15,52[ e — 2}. (5.3)
The mutual inductance is therefore
al By Gy S — i+
L K\ MIZ:EZﬁQS]S2[3(r nl)(r I:2) n, HZ}‘ (54)
B r

'(b) The mutual inductance becomes equal to zero when

Q) B A
ol | 3(r-m)(r-n,)=n,-n,.

——

(If n) and n are parallel then n, -n, =1 and we find

/ |cos’0=1/3, (5.6)

where 0 is the angle between r and n; (n2) so that
cos@ = (r-mn,)=(r-n,). This gives

0 ~+54.7°,+125.3°. (5.7)

'At these angles the plane of loop S lies parallel to the T <
//{ magnetic field lines produced by loop S| and consequently
the flux is zero, as is seen from the figure.



B4. Most materials are neither perfect conductors nor perfect dielectrics. Many capacitors with
dielectrics will "leak" a small current. Consider a cylindrical coaxial capacitor with a leakage cur-
rent between the two long electrodes of radii a and b, with b > g, separated by an unknown
material of conductivity o and permittivity close to go. They are maintained at an electric poten-
tial V' with a current / flowing from one to another in a length L. Find the conductivity o.

QoLuLLon.;

“Let us start by calculating the electric field between the cylinders at a radius s, with s between
the radii @ and . We consider A the charge per unit length of the inner cylinder. Gauss’s law

states
Q ol m'\ N
0] @E ~da = & ) R {5 }
o1 te S 2
V‘ ’ ) The left side of the equation is £2zsL , while the enclosed charge is simply AL . We therefore have
E2nxsl = AL, ; (i) ‘\(“'V\}A
80 _j

so that the electric field is

A Wipordonl ,] . !
E —i—s \()\\ N K
L 276, s ) l ‘ l

[According to Ohm’s law J = oE and therefore

Q Pom(<3 1 :-[J-da =E];Eﬂ~da‘ ;:‘a 2 27rsL%ﬂ.
o 2mes &

pom S,
l/{/\j) 1/ d
curired AwJHN

k\f AN

The electric potentlal is

:—IE dl j e ds =~ i Ins
" 28,8 27, 27e, 2rg, a

l{‘poml-(-

o - % (Inb—Ina)= 4

In—.

\c)(;\\

) Po\ 4\’

L[
From the ast tWOIelatlons we find: (¢ubchiule dor 2 %m« 7)
27150 2nol  a

and tlmefme

b
In—.
27 LV a

{ O =

0‘/\\

‘1
|



A3. A conducting rod of mass m and resistance Ris free to slide without friction along two parallel
rails of negligible resistance. The rails are separated by a distance / and inclined at an angle 6 to

the horizontal. Another conducting rod of negligible resistance is placed at the base of the rails
making a closed circuit. There is a magnetic field B directed u

pward. Find the terminal speed of
the rod. (Assume that the rails are long enough for this).
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A4. A large electromagnet has an inductance 40 H and a resistance 10 Q. It is connected to a dc
power source of 250V. Find the time for the current to reach 10 A.
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A2. QM short

An operator Q is called anti-hermitian when it equals minus its hermitian conjugate:
Q=-Q'.

a. Show that the commutator of two hermitian operators is anti-hermitian.
b. Is the commutator of two anti-hermitian operators also anti-hermitian?
c. Show that the eigenvalues of an anti-hermitian operator are purely imaginary.

Answers

Parta.

For A and B both hermitian: 1[

[A,B]' =(AB-BA)' =B'A"' —A'B" = BA— AB=—[AB] QF )

Partb.

For R and S both anti-hermitian:

Yesitis: [R,S]' =(RS—SR)' =S'R" —R'S" =(~S)(-R)—(-R)(-S)=SR—RS =—[R, S] g F >
Partc.

Glg)=glg) = (9|Glga)=(glglg)=g .
9*=((9Gl9))*=(9|G' |g)=(g|(-C)lg)=—(g|Glg)=-g 9 p JU
g*=—g = geill ={x|Re[x]=0}



A3. QM short

For what de Broglie wavelength is the kinetic energy of an electron equal to the energy of a photon with
wavelength 1 nm?

Answer
pria P
(a) Assummg the electron is nonrelativistic, we have: Kinetic energy of electron K= 2 = M
m 2m

wx‘\-__ s (

hc .
and en of photon= E=—

Setting these energles equal we find

Answer: 34, 9pm

(b} Photon’s energy is hc/A=1240 eV=1.24 keV. And the electron energy is the same which is much
smaller than the electron rest energy 511 keV, therefore the nonrelativistic expression for K is

justified. | 2 P‘{‘ s



(A% G
(0“? Svakx = ;7'!‘2 /6’ s - el 7 g?’]@

@{-f/%ﬁ-d"M}S 30{ [‘fu S @t nekee +f b Qe — N 4
ith  probafilitits SO cech Y Hé
o chx - ‘{"é,(
C:&/’I’C-‘Vf()?'m'/}y wovt (/aﬁ.«_-ﬁ'oﬁzﬁ' G) ,, asd €

(é) Va4 fw% :% [ ity 700 ) /‘j/“ovéMk-ff'(Z}
39t

W v L€ f-:e.a.c./'v ©n 5 77 A X

(¢) T»o0 SL(’(J{),:&}?M@H&E%/;;

whee £EF r %\ Vkﬁ

2477




. d. q,:jﬁ,,ﬂ ey i,
L e A f)é”’}‘;
: i‘P_;Aj.@:E(L”'z'*” /
o 2 'xo) ¢ - A '5% (%_,)"”eﬂ/xo
hn (g 4 INE A
. nt ’ ’
_ (e (7






B2.

f,.w " (’1} _ ﬁt 9 )
..-_4 7# __5 /i;, (f)
Hence “
o] = L[ B 2 2
] = L[ k- tho 2]
) i A' A’ A Aa
_.-mlé’{[drrﬂ%]’[a:?ﬂr‘;]}
BPNELES
C WA 2
' %
= d’-f%ﬂ’ Z» E'LJk a [717@
rﬂc k{-l
irhone, gtdl‘ e W{’*C‘:""l“ glasliy Vuﬁﬂf’w
§€7‘Z: E /
ek 2
i M



Notes on B2;
1/c factor appears in Gaussian units. Most likely, they will do this problem in Sl units without 1/c

The use of the Levi-Civita symbol is not required. It would suffice to get [vi,v2] (or [vyvy]), and then
other two by cyclic permutation.



B3 Consider an electron in a uniform magnetic field pointing along the z direction. At time t = 0, the
electron spin is along the positive y direction, with spin state vector

lwy=32(|T) +ild) ):%ﬁ[}]’

a. Show that |y) is an eigenstate of S,, and give the eigenvalue.

b. Find the spin state vector fort > 0.
¢. Also give the expectation value of S; fort > 0.

Answers

Sy|t;/)=%h{? g}%ﬁ[ljziﬁﬁ[o Bf][l.)zihﬁ].Theeigenvalueis +3h.
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