{ % ks (a) Conservation of momentum suggest that

[pphotoni + Ppani = Pphoton f T Ppan l L P“\ S

o eV .
Note that the C{gée pan is initially at rest and the photon is absorbed after the collision, therefore,

- .
h ‘ 2 \,}' -
Z+0=O+Ppan /S W F‘J
So we obtain
34 ] Q ’
‘ h 663x1073%] s kg m { T S
| Ppan =5 = S ezxr0miL | AP
A 100x 10~°m s B

SN

7 b) If the copper crepe pan has a work function of 4.5 eV, what is the energy of the photoelectron emitted
jb Jf}J as a result the absorption of the photon in part (a) ? Recall that 1.6x10™° Joules = 1eV.

(b) Using the photoelectric effect equation (Conservation of energy),

[Ephoton =K, + (D/j ?) PO( n ; S

We can solve for the kinetic energy of the photoelectron to obtain

hc 1240 eV - nm
K, = Ephoton -0 = 7 -0 = W —4.5eV =124¢eV — 45eV =79eV

c)
q ‘SOW\%B ’

Conservation of momentum require that

y i J1Y
} . [ppanf = DPphoton T Ppan ] 5 . | e
P‘F - PL B

'{ PL'\( ; C": ,{ - FJ 9«;»\4‘*/\ ) \ - [ ) . . 4
P(Pf“ — Pﬁ’()' Lo < Pryen = Pro “f‘*’iﬂa«f = Pk
o WM . ) >

P
<



Therefore,

~ 2pts e |
h | 16.63x10734) s t
Ppan; =;1-+,/2mel{e&=§ 00210 ++4/2(9.11 x 10-31kg)(1.26 x 10-18))

i
e i
1
f

kg-m
= 152x 107247 /

S

——

A2
The parity operator 2 in 1 dimension is defined by ]3(//(x)=(//(—x)

a. Is P Hermitian?

b. Find the eigenvalues of P.
c. lIse™ eigenstate of P?

ANSWERS 5> _dx=du
%0 & Lj}( =k 8 cwiteh limiks
4 porals[a. Forall [y)|g), we have | ' |y)=(Pply)= [ ¢"(-x)p@)dx= [ o' @ (u)du=(p| Ply), s0 P
Lis Hermitian
g f‘?m—fg»’[?- If we have Py(x)=Ap(x), then PPy(x)=p(x)=w(x) = A’=1, so A==l
9 [ c. e® s not an eigenstate of P since Pe™*=g**
pre =

b3

A3.
&BThe de Broglie wavelength is given by

Eaornth h h 6.63x10734) .5
o Ll 3 - / =1.74x10"1°m

L = =19
P J2m.K, \/2(9.11 x 10731 kg) (50 eV x %)

L) anerkS b) If the electrons are monoenergetic but not coherent (not single slit diffraction) and are fired through a
U slit that is 1 nm wide, estimate the width of the electron beam 1 meter after the electrons go through the
slit?

Since the electron can go through any point within the slit along the y direction, we can then say
that the uncertainty in position of finding the electron within the slit is given by

A\
(!

e - - ',
(Ay =1nm J( o F e ,



Using Heisenberg principle

AyAP, >

N[ S

we obtain that

Av, >
= 2m,Ay

T ————

Notice that the travel time of the electron along the x direction is given by,

Since we know the kinetic energy of the electron, we can rewrite the above as

Nl Q.

2

N

x| &

|

\\\
-

The width of the electron beam is then given by,

o= t—( h )d me |\  hd 1
~ o= omLny 2K, | ~ Ay [8m,K,

_ (1.05x 1072/ - 5)(1m) 1 )

= 19
(1x 1072 m) 8(9.11 x 10731 kg) (50 eV x 60;;119 ]

=1.38x10"?%m

Alternate approach:

From the single slit configuration we can obtain the relation



A
2tan@ :ﬂ

Dx

Assuming that 8 is small we know that tan 8 = sin 6, therefore the above becomes,

A
2sinf = 2Py
Px
Using the Heisenberg uncertainty principle we obtain
2sinf =
2Aypy

which is equivalent to

2sinf =

zw#zﬁ
Since the width of the electron beam is given by

W = 2dsinf
we have

hd

W= 20y (2m,E)

_ (1.05x 1073 - s)(1m) !
_ /. -19
2(1x107°m) 2(9.11x 10731 kg) (50 eV %’g



=1.38x10"%*m

The answer 2.76 x 10™?m (considering the +y and —y direction) will be given full credit too.

/ {_¢) Using the values above, but now assume the electron beam is coherent, with a double slit aperture,
\O ‘()()"/‘“‘fwith the slits separated by 3 nm, what is the scattering angle to the second peak (with the angle defined
by the deviation from unperturbed direction of propagation).

Solution

The condition for constructive interference in a double slit experiment is given by

im'}f\ 3 pdn Ys "= 9

i B o —

e = '\

?)]oom(s

& ‘
Solving for the scattering angle 0 to the second peak (n = 3) we obtain, |

-

R
-1 ni g 3(1.74 x 1071%m) A— ‘AU D)
0 = sin <—a—> = sin —~10.0°

(3.0x107%m)

Bl.

Consider a three-dimensional vector space spanned by an orthonormal basis |1), |2), |3). Kets |«) and
| By aregiven by |a)=i|1)+2]|2)+i|3) and | By=i|1)+2]|3).

. Construct {a| and (/] in terms of the dual basis (1|, (2], (3].
b. Find (x| f) and (B|a).

c. Find all nine matrix elements of the operator 4=|a)(/3| and construct its matrix A in the basis
[1),12),|3).1s A hermitian?

ANSWERS

)]

it =2 (l=la) =(i[1y+212+i13) = (1) +(212) +(i13) =142 ~i3]. | L pt s



'
|

Similarly' <ﬂl = _l<1 |+2<3 | . _ ‘{14," ‘.‘, Ts

b. (a|B)=(-i1|+2(2|—iB[)(i| 1) +23)) = (=DK1 | 1)+ (=)2(3|3) = 1-2i ; Fa\,,\{g
(Blay=(a| B) =1+2i |

\0 PPET e A=laXBl= (i1 1)+212)+1|3)) (=1 | +2(3]) = J points remembes , M?\
3 :i(—i)|1><1|+2(—i)|2><1|+i(-i)|3><1|+2z|1><31+4|2><3|+2i|3>§3|:] LA
[ =012 201+ 3%0 |23 13| +4] 23 +2i13%3] ] 2+ ) )
All A12 A13 1 0 2i A = || ’7\@ \
Now with 4, =|i)j| wehave A= | 4, 4, A, |= i 0 4 Jb o A .

Ay A, A) \1 0 2)/ " 2 W Ll

i -
e — " N ) o - pJVr\ A 1{ l/\ \.’\

K~~We see that A ¢A, SO the matnx (or operator) is not Hermlﬁzgn} e pol Vli\ S

B2. Find the eigenvalues of the component of the electron spin in the direction of an arbitrary unit
vector i

ANSWERS

We must solve

SPOM‘!’ n-S|A)y= %/1 | 1), so we write the eigenvalues as /1%.

sin@cos¢ )
{) \ S[n spherical coordinates, the unit vector in the direction (0,¢) is given by i =| sin@sin¢ |, so we have
O P0Ind

cos@

D’PJ"S -8 =S sinfcosg+S sindsing+S,cosl =

, - Kaats

0 1 0 —i 10 [ Pou  Spaan Wa/MAL (

% JY =& sianos¢+—h— ) ! sin@sin¢+—h— cosd = O\M) | o bon o‘x-;‘._'.,'..,..!\.M
S 201 o 2i 0 2{0 -1 N S YO )
cos® sin@cosg —isinOsing) | B

_ \TS sin@cos¢g +isin@sing —cosd -
6? cosd sin@(cosp—ising)| p( cosd e ’sin@

sin O(cos ¢ + isin @) —cos@ 2| e?sin@  —cos@

Diagonalization:

——(cos@ /1)(0050+/1)—~—sm =0 =

cos’ @+ Acos@ —AcosO@—A? +sinf=0 =
1-22=0 = A=+I1

,fa Q%ZM VU-zQMQ/) L %ﬂ/}l



So the eigenvalues are ig

B3. An electron in a hydrogen atom is in the stationary state
Wz,l,—l(rﬂe’ P) = Nre™"2% K,—1(97¢)

(a) Find the normalization constant N. Check that it has the correct unit.
(b) What is the probability per unit volume of finding the electron at » =a,, 0=45°, and ¢ =60°?

(c) What is the probability per unit radial interval (dr) of finding the electron at » =2a,?

(d) If L* is measured, what outcomes can be found and with what probabiliies?
(e) If, instead, L, is measured, what outcomes can be foundand with what probabilities?

Cheat sheet: J-u“e‘”du =™ (u" + 41’ +12u” + 24u +24), plus a list of low-order spherical harmonics.

ANSWERS
(@) [1pl>av = [|yp|* r*drdQ = [ N r2e wr?dr x [|Y|2dQ = N? [r*e %odr =

r ‘ 07
J 4 3 2.2 < & _
N [ age 4(24 at + 24ar + 12a’*r* + 4ar’ + 1 )]r=0
r v =0
N?|aea(24a* + 24a%r + 12a%r? + 4ard+ rt)| =24a5N2=1

.
// ] = (\”
1 iy Ve S hu \«'1.7()')\‘»,' 9

N = D W\
Viras 2 M

Soy(r,0,¢) = IZ\C/E/Z re %Yy (0, ). Check: The unit of  becomes 1/m*?, as it should.
0

(b) This probability density is [P (1, 8, $)|* = ﬁrze—%wl,_l(& (I))|2 =



2

WA D

a0
= 2‘%_’_3_ -i gj - 2y ag B o245 = Lt 3t 1 3 1.
24a05r g 81te siné 24ay° ao~€ 8ns (45°) 24a03e 8mw2 a3 24+8m2e
1 1 9.15x10™* 27 -3 . D | ( 7 5]
—3 = =6.18 X value. < td we  OA—
2o 12870 " 6.18 X 10“/ m™?, quite a large value S /'/O | /,}‘ .
s > A
- _r _2a9 )
(c) dP = R2(r)r?dr x [|Y|2dQ = N?r?e wr?dr x 1 = N%*r*e adr = N*(2ap)*e “dr =
2
==
3e“ag
B y
so the answer is —— = 1.71 x 10° m™1.
3e“ag

(d) The only angular momentum in this state is [ = 1, so when L? is measured, we find [(l + 1)h?
2h? with 100% probability.
(e) Similarly, we only have m; = —1, so we measure L, = —h with certainty.
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A1 The electrostatic field produced by a charge density is given by

X+ Xy +zZ
E=E(,—)—/-—y—-.

Find the total charge Q contained in a sphere of radiusﬁzentered at the origin.
Solution:

7\ccording to the Gauss’s law, the total charge is

Q=¢,[(E-F)da,
‘ d

where the integration if performed over the sphere of radius ;1 fn spherical coordinates, we have

i e X . e A ; » b Rt : =
r=s L'é % | w : &Ad)x +§(/V\ @w‘:ﬂL{A' &%@—Z ' [mmhlsdoesnotchangetheresul\ thl

and on the sphere

6} q 'E r=E [ﬁyﬁ cos¢sm¢+Rsm Hsm¢cos¢+cos H:I E, [sm 0O'sin 24 + cos’ 67] ‘ & Comment;c{lg,lﬂ]/Sm(Z\pl)s d be divided by 2, but l

tlns does noychange the finakfesult DO

Ro

:lhe 1nte§iat§>rg)f Asm 2¢ over ¢_§l_fj?i? and thercfore we obtam 3 P \' S,
Q%,a E‘,J.cos 6sin Hdﬁ%g-irg(,a E,. o?/ YMYUA}A

Q- o §etdn du - RodobsuiOde

L :
Q- éo/f{;b[ ]Q;W@A@Ac@ -
1% 0 - Agd 7

M we W LMQt W&u((ﬂ(ﬁ " W



A2. An infinite plane of a uniform charge ov per unit area is placed at distance z =/ above the
surface of a ha]f-space grounded metal.

( ‘f» P{ < [ (1) Find the Qotcnllal and the electric field i m all space. L1
) ANAN

[0 M S L2) Find the induced surface charge on 7metal surface,

Solution:

. ’(1) The solution can be obtained using a method of images. An image charge plane is | cated at

O =—h below the surface of a metal and has charge —oo per unit area. The electric fil€’ pr (3d c&:d

5 P\ 5\ by by the two planes of charge is uniform between the planes and is equal to E = ~Zu5 . Above the
g()

7\/ r L plane of charge, z > h, the electric field is zero} Since E =-V®, we find that between the planes

P o .

the potential is ®(z) = —2z+ C, where constant C must be equal to zero in order to have zero
. €

potential on the grounded metal surface. Above the plane of charge the potential is constant and is

equal to d(z) = @h . Thus,
£o

d(z) =0; lL 0 z<0

<D(z)———z, E—ﬁ—z 0<z<h\ Q)
o P [

CD(z):g—O-h; E=0; z>h
20)

at z=0and z = hthe potential is continuous, while the electric field is discontinuous.

(2) The induced surface charge density o on Wetal surface is given by

s ———ee _ ’
{Euhovc - Ebelow =—n, \ b F/QA (2)
o

K{ E is the elegtrxc field above the metal surface, E,,,, is the electric field below the metal/}

above

; surface, and n =z is the normal to the surface. From eqs.(1) and (2) we find that o = -0, _
L

b
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B1: A simple circuit consists of a capacitor C carrying charge O and a resistor R as shown. At time
t =0, the switch is closed and the capacitor is discharging. Find current /(f) as a function of time ¢
and show that the electric energy originally stored on the capacitor is fully dissipated on resistor R
at 1 > .

I

Solution:

1. When the switch is closed, current / flows through the circuit. According to Kirchhoff’s loop
rule

S pha VetV =0,
where V, is a voltage drop on the resistor ¥, = IR and V.. is a voltage on the capacitor. The latter
is given by V. =¢q/C, where q is a charge on the capacitor (dependent on time). Due to the charge

conservation the current / in the circuit is determined by the same charge, so that 7 =dg/dt . We

therefore obtain:

q FJ\A R%+—g—:0,

resulting in g(¢) = Qe™*“, where Q is the charge on the capacitor at ¢ = 0. The current / is then

given by
& \ (¢ :d_qz,g. *ﬁ.
oS gpv‘s == "xc®

2. The initial energy stored on the capacitor is | W,. =

the energy per unit time dissipated on the resistor is /”R . Integrating over time, we obtain for the
total energy dissipated:

q . T 2 e 2 2
W 2 W/eZIH([)Rd[: o J'e RC gy = 0 ZQ_C:_:
0
W

10°
RC? RC* 2 2C°

e see therefore that W, =W, , as required.
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B3. A dielectric sphere of radius R with a dielectric constant ¢ has a free charge O uniformly
distributed over the volume. The sphere is surrounded by empty space.

1. Find electric field E and electrical displacement D inside and outside the sphere.
2. Find polarization P and the volume and surface polarization charge densities.
3. Show that the total polarization charge is zero.

Solution:
1. The electric displacement D can be found from the Gauss law.

[]jD-nda:q.
S

= ;
By symmetry D is pointing along the F direction and spherically symmetric. Using the sphere of
radius r < R we therefore find

~ |
6 ?)V) Dazr’ = 3Q3i7zrr3
47R° 3
E}d thus
= D= or r.
f - 4z R’
L {)5.‘(' Outside the sphere, r > R,
- L
- drr’

The electric field E is

2. The electric field E, the polarization P and the electric displacement D are related as follows

" T
( =$E:£(,E+P,I > SM\M uh b e

4 | herefore inside the sphere . < Ve g“’ AN "‘LL L
S ro Swa)
P P:(g—g‘,)E:—(g—g(,)éli—mr :
5 { The volume polarization charge is given by
o prs 10 £-¢& 30
,=-V:P=-——(r’P) =" .
— o r 8r( ' ) & 4AnR’
75 ,{ The surface polarization charge is given by
8 S
. % g-g, Q
{\ O-l’:P'rrzk:_ gu 1R

3. The total polarization charge is therefore

6MA ‘ p,,%R3+a,,47rR2:O.



B4. A magnetic moment with fixed magnitude and direction, m, = m,z, is held at the origin of
coordinates. Another magnetic moment m is held fixed at an arbitrary point r, but its orientation
is allowed to change freely. See the figure below.

(a) Find the equilibrium orientation of the moment m (given by a unit vector m ) that corresponds
to the minimum of magnetostatic energy.

(b) Draw an arrow indicating the equilibrium orientation of the magnetic moment m on the figure
below, assuming that the angle between r and mo is 0 = 45°.

zh

Solution:

(a) The interaction encrgy between these two magnetic moments is given by

U=-m-B, €))
where B is the magnetic field generated by the moment mo at the point r, which is given by
B:_E&3(ml)'92?_m(). )
4r r

From (1) we see that the minimum energy will occur when m || B, so we simply need to find the
orientation of the magnetic field B. We can rewrite (2) as
Moy Fagn axa a7 My -
B="223(z-r)r—z |==—"—=|3cosOr—z|. 3
s [3()i-2] =05 ] 3)

The modulus of this field is

B|= %[(30030?—i)-(3c0s9f'~i)]“2 = —g””—m—‘;(%osz 0 +1-6cosOF -2)“2

= M\Bcosz 0+1
4’ '

Therefore the equilibrium orientation of the magnetic moment m is

4

. ~ B 3cosOr-z 3zt—-rz ) 7
m=B=—-= # . 5)
Bl \3cos?@+1 | 322+ o
(b) From (5) it is clear that the magnetic moment lies in the plane formed by the vectors 2z and F,
which without loss of generality we can take to be the xz plane. Plugging 0 =45° into (5) we find.

5




i oc 3cos O — 2 = 3cos O (sin O + cos 0z) -7 =

AT AN
2

. 1, (6)
—Z=—X+—Z
2 2 2

2

which should look like in the figure below.

™Mo
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