Preliminary Test, May 2021
QM problems

PROBLEM 1 (A1)

Photoelectric experiments are done with the target ma-

terials ® and @ with work functions ¢; and ¢, , respec- 0 ®

tively. For each material, the stopping potential Vj is
plotted as a function of the frequency f of the light

used. The two straight lines in the adjacent graph show
the result.

a.

b.
c.

Explain in a few sentences what “stopping poten-

tial” means.

What is the slope of the straight lines?

Which material has the higher work function, ® or @?

The work function of material ® is ¢;=4.30 eV .

d. What is the largest wavelength light can have to cause photoemission from material ® ?

ANSWERS

Stopping potential is the smallest potential difference between the sample and the anode
for which no electrons reach the anode.

We have hf =¢p+K=¢p+eV ,so0 V, =Ef—£, and the slope is E
e e e

The lines intersect the abscissa when V :Ef—£=0 = ¢ ="hf. This shows that
e’ e
¢ > ¢

For this largest wavelength, K=0, so

W =gt o 4 _he_1240eV.nm
o ﬂ'max e ¢ 430 eV

=288 nm.
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PROBLEM A2

P(x), ¥V (x)

In this one-dimensional problem, we consider a T
stationary state of an electron with energy E in V=V, . —— —

a finite well of depth V. The adjacent diagram
shows both the potential V(x) and the elec- /\ /\ /\\
tron’s wave function y/(x) as a function of posi- \\/ \/ \/

tion X. The electron is in a bound state, meaning

E <Vy. We will focus on the part of the wave  1=0

function in the classically forbidden region x > 0. x=0
a. Why is this region called “classically forbidden”?
b. Show that the wave function y(x) = Ae™** (with ¥ >0 and A some constant) satisfies
the time-independent Schrédinger equation in this region, and derive an expression for
K.
c. The wave function y/(x) = Be* ™ also satisfies the Schrodinger equation in this region,

but must be rejected. Why?

At x =0, we have y(0) . Ata certain position X; >0, the value of the wave function has dropped

to ay(0), with a <1.

d. Find arelationship between x, X, and « .
Use your answer of part d. and the expression you found for x in part b. to find an ex-
pression for V.
f. IfE=227¢eV, X =11A,and a =0.13, find the depth of the well in eV.
ANSWERS
a. Classically, the total mechanical energy of a particle is E=K+U . The particle can only
be in locations where it has kinetic energy greater than zero, i.e. U< E. For x>0, we
have U > E, so, classically, the particle cannot dwell here; the region is “forbidden” to
the particle.
n’ 2m(V —E)  det 2m(V, —E
b. TISE: —y"+Vw=Ey = y" :#w = x’w, with K‘IJM.
2m h h
The wave function Ae™" solves this differential equation.
c. The mathematically valid solution Be™ must be rejected because the wavefunction

would not be normalizable. (The normalization integral would diverge.)
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d. ,A/e_’“(’:a,A// = —kx,=In(a) = K:—ln(a)

X

o oo [PMVE) @) Zm(VO—E):[ln(a)Jz

h X h? X

V. = E+h_2{h’l(—0())2

0
2m X,

0 0

2
2
f. With m the electron mass, we calculate Zh_(ln(_a)] =2.10x10"" J=13.11eV. We
m x,

conclude that V,=227+13.11=15.4¢V.
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PROBLEM A3
. In this one-dimensional problem, a particle of mass m is inside a potential well given by

U (x) =U, cosh(bx)
When the particle is not far from the equilibrium position at x =0, the potential U(x) may be

approximated by a parabolic potential.
a. Calculate the parabolic potential as a function of X.

Close to the equilibrium distance, we may consider the system as a harmonic oscillator.
b. Find the spring constant of this harmonic oscillator.

We have U, =10.0eV, b=2.00x10° m™ ,and m=9.11x10"* kg .
c. Calculate hw injoules andin eV.

d. The system makes a transition from the state with n = 3 to the state with n = 1, emitting
a single photon. Calculate the wavelength of this photon in nanometers.

ANSWERS

2 4 6

a. We have cosh(x)=1+x—+—+
2 24 720

def.
b. The quadratic termis U b*x* = Llkx?,so k=Ub>

/sz
c. ho= h\/7 =2.80x10" J=1.75eV

d. The transition energy is E,-E =@B-1hw=2hw=3.49 eV. Hence,

+...~1+1x’. Hence, U, cosh(bx) = U, +1U,b’x".

A= @ =355 nm.
3.49
PROBLEM A4

We consider a spin-£ particle (i.e.ithass= %).

a. What is the magnitude of its spin vector S?
b. Can the spin vector of this particle be perpendicular to the z-axis?

c. Calculate the smallest angle the spin vector can make with the positive z-axis.
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ANSWERS
a. [8|=s(s+Dh=\Z-3n=37h=419x10* ] s
b. No.This would mean S =m 7 =0.However, m_e{-%2,-2,-2,—1,+1 +3,+2 +1},

so m_ (and, hence, S_) cannot be zero.

5 hoIn
¢ cosh,, = e o Mhual _ 50 _i 7 gy = g —281°
S| \ss+Dn 27n

PROBLEM B1

The operators L and M are Hermitian (self-adjoint). Operators A and B are not.
a ls exp(ﬁ) Hermitian?
b. Is [ﬁ,M] Hermitian?

c. ls [A+,I§]+[A,I§+] Hermitian?

ANSWERS
t il Y 1 1
. [ = — = e — = P — An + = —_— An = [
a. Yes: (exp(L)) —{En n!} ”(rz!} z, n!(L ) =Z, n!L exp(L)

A A A A ~ T A A A A1 A AL A AA A A A A
b. No: [L,M] =(LM—ML) =(LM) =MLY =MLt - ['M" = ML - LM #[L, M]
c. No:
~L A ~ o \T A A i~ AT A L ANT
([A+,B]+[A,B+]) :[A+,B]++[A,B+]+:(A+B—BA+) +(AB+—B+A) -
_ (A‘I'B)‘I' _(BA'I')'I' +(Aé‘|')‘l' _(B‘I'A)‘I' _ B‘I‘A'H‘ _A‘H‘B‘I‘ 4 B‘H‘A'l‘ _A'I'B'H‘ _
=B'A-AB' + BAT - ATB=[B', A]+[B, AT]#[ AT, B]+[A, B']
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Problem B2.
Answers:
(a) at t > 0
h 1 —iwe /2 —iwt
W(z,t) = ﬁf’ Fleo(z) + r(z)e ™
therefore
1 — it |2 1 — it h
(r) = fth?ﬂ'(x) +1(x)e ™7 dr = Efﬂpu{ﬁﬂee rdr = 5 - cos wt

where we used

fa:{,-:%{.r]dz =0, fx\p%{.r)d:r =0

due to symmetry consideration, and the fact that @n, @1 are real.

(b) The classical initial-value problem with z(0) = zq, v(0) = 0, gives
z(t) = xo coswt

where zj can be found from the energy equation

mw?a} 2K
,  Tp = -
2 muw?

E =

In order for quantum and classical results to coincide we need E = fuw /4.

4
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—iEt/h —iEst/h

(z,t) = sin(kyx)e + 2 cos(kyz)e

where

W2k hk:
By = 2m ’ By = 2m
(b) Outcomes: ky, —ky, kg, —ky.
The probability to get k; is
P 1 1

T 1¥1+4+4 10

similarly for —k; we get 1/10, and for ky, —ky we get 4/10 for each.

(c) After measurements
Y(x,t) = Ce™®, C=1/2i.

This is the energy eigenstate with the energy eigenvalue E; = ?'121;% /2m.

B4. (a) Possible outcomes: h/2 and —h/2;
(b) expectation values: (S,) = h/2 (eigenvalue) For S, (S,) = Pih/2+ Py(—h/2) =0
since probabilities for spin up and down are equal 1/2 both.

(¢) The Hamiltonian of interaction with magnetic field
[
H' =—8S.,B
m

(assume B along the z axis, since the gyromagnetic ratio for electron is ¢/m. When the
spin flips, the igenvalue of S, changes from /2 to —h/2 resulting in the energy change

AF = ehB/m, therefore frequency of radiation is

w=AE/h=eB/m=1.76 x 10"'C/kg - 1T = 1.76 x 10"'rad/s = 2.80 x 10'°Hz.



Al. A metal hollow sphere of radius R is kept under a constant potential ®,. Using the Gauss’s

law, find the electric field E and the electrostatic potential @ inside and outside the sphere and
determine the surface charge density o.

Solution:

1. Assume that the sphere has surface change o. According to the Gauss’s law, we have for the
electric field outside the sphere
2
mE da— 4zR o
S o

Using for the surface S the sphere of radius r > R and using symmetry of the problem, we find

2

oR° .

E:—Zr.
&l

Hence the electrostatic potential outside the sphere is

r 2 r 2

oR 1 oR

O=-|E-dr=—— | —=dr=——.
-[ g I &f

The surface change density can be found from the given potential on the sphere which leads to

&, D
o=20"20

Therefore, outside the sphere the electric field is

e =29,
r

and the potential is

Inside the sphere r < R Gauss’s law theorem says that the electric field is zero and consequently
the electrostatic potential is constant

D(r) =d,.



A2: A spherical conducting shell of radius b is concentric with and 0
encloses a conducting ball of radius a. The ball is grounded, and the

shell has charge Q. Argue that the presence of the charge Q on the shell

will draw up a charge onto the ball from ground. Find the magnitude of a’
this charge.

Solution

A charge will be induced on the ball to maintain a zero potential. In the absence of this charge
the potential would be non-zero, equal to Q/b due to the charge Q on the shell. Drawing up a
charge Q' onto the ball from ground establishes zero potential on the ball. The condition of zero
potential on the ball determines the magnitude of the charge Q':

2,90, )
b a
from which we obtain
a
'—_20. 2
Q bQ (2)



A3. A strip of width b carries a uniform surface current K =Kz. Find z

the magnetic field B at a point in the plane of the strip that lies at y
perpendicular distance a from the strip in the y-direction. ‘ K

(]

Solution:

The problem amounts to superposing the fields from a collection of long straight wires. An

infinitely long filament of width dy at position y carries current dl = Kdy . This filament gives a

contribution to the magnetic field at the point of consideration
dB =+t Kdy

=—— X. (1)
dr (a+b-vy)
The total field is obtained by integration of Eq. (1) over the strip width:
b
B=_ﬂKJ'L§(=_ﬂK|n(a_+b)§( @)
Az y(@+b-y) 4 a

dl
],z
[ y
4




A4. The current is given by I = eAc where A is the number of protons per unit length,

therefore

)\Zi 5x 1073

= =1.04 x 10°m™".
ec 1.6 x 10-19.3 x 108

The proton number density in the beam n = A/A where A is the cross section area. Therefore

the average distance [ is

;4 1/3
l=n"13= (X) —2.13 x 10 " m.



B1. Two infinite parallel wires are oriented along the y-direction and
placed at a distance d apart. One wire carries a current I, and the other
carries current 1/4 in the opposite direction. Between these two wires
there is a particle with position constrained to be in the plane formed by
the two wires (the x-y plane). This particle has magnetic moment, m,
that is fixed in magnitude and direction along +z, i.e. m=mz. Find the A
equilibrium position, x, between the two wires (0 < x < d) of the particle
that minimizes the interaction energy of this magnetic moment with the y °
fields generated by the current of the wires. ‘

Solution:
From the Ampere’s law, the magnetic field generated in the x-y plane by the wire at x =0 is
I,
B, = My
27X

The magnetic field generated by the wire at x =d is

__ s
2 8ﬂ(X—d)
The total field is the sum of these two:
po_tol 5, #l 5

27x 8r(x—d)
The interaction energy of the magnetic moment m with the field is given by

27x  8r(x—d)

We must minimize this with respect to x. Taking the first derivative, we find:

0=V _ Mmul - mul __4myol(x—d)2—myolx2

X 27x sa;;(x_d)2 87zx2(x—d)2

Setting the numerator equal to zero and solving for x, we obtain

4(x—d)2—x2=0:>x:§d,2d.

1)

)

3)

4)

®)

(6)




Only one of these, x = 2d/3, lies between the wires, i.e. from 0 < x < d, and this is the minimum.
To make sure it is a minimum we can check the second derivative of U:

U _duml mugl Amul (x=d) —mu ¢ my,l 0
x> Anx® 47r(x—d)3 47rx3(x—d)3 8zd®’

which is negative, ensuring the point is indeed a minimum.

Correction: the second derivative is actually positive, coef= +81/8 in front (sorry, could not
correct in the equation-I1F), which is the requirement for the minimum. It can be also easily seen
by sketching function (4) which is positively defined and approaches +\infty when x approaches
0 from the right and d from the left.

2. This is the unstable equilibrium if we allow the dipole to change orientation, since the dipole
is originally oriented in such direction that interaction energy -m-B is positive (m is antiparallel
to B). The stable equilibrium would correspond to m parallel to B.



B2. A polarized matter with a radial distribution of polarization, i.e. P =Pf
, Where P is constant, has a spherical hole of radius R at the origin. Find the

P
polarization charge density and the electric field everywhere.
o l =

Solution:

There are two contributions to the polarization charge density: surface and volume. The
polarization charge on the surface of the spherical hole is equal to

c,=P-n=-P.f=—P . (1)

The volume polarization charge at r >R is given by

pP:—V-P:—PV-f:—PV(?):—P(Y:£+r-Vlj:—P(E—rw%j:—EE. 2)
r r r

According to the Gauss’s law, o, and p, produce purely radial electric fields outside the hole.

The contribution to the electric field at r > R from the volume charge density is given by

E, (=20 (3)

Arg,r?

where Q(r) is the volume polarization charge inside the sphere of radius r, i.e.

Q(r) = Ipp(r)4nr2dr = —4ﬂI2—PpP(r)r2dr = 47zP(R2 - r2) . (4)
r
R R
The contribution to the electric field at r > R from the surface charge density is
~47PR? . PR?,
E (r)= —F=——T. (5)
Are,r &l

Summing up the two contributions, we find for the total electric field:

P,
——1r r>R
E(r)=E,(N+E,(N=y & : (6)
0 r<R



B3. Equation for the circuit

dI
£- L= =IR (1).

The current grows from [ = 0 at t = 0 to £/R at t — oo. (a) Initially [ = 0, therefore
dI/dt = E/L =3 x 10% A/s.
(b) For I = &/2R
dil.  &€—(E/)2R)-R &

R — — =15 x 10%°A /s.
di L op = O X 107A/s

I; = &/R =12/150 = 0.08A

(d) The solution of the differential Eq. (1) is
£
I= & (1 —exp(—Rt/L))

therefore

L IR 4x107*
( ) — 227 1n(0.01) = 0.00123s.

£ 150



B4. The potential difference is given by the Faraday law

dP

;o
! 0

The magnetic field at a distance x from the wire is

I
Bf&

T o’

The corresponding element. dx of the wire creates the potential difference

dV = —Bd:cd—y
dt

where dy is the element of distance covered by the rod in the direction of the current,
therefore dy/dt = v and

wolv  d+b
S kel N

V= =
T 2w d

nolv fd+b dz
2m Ja

The sign — represents the Lenz rule: if we had a closed loop whose part is the rod, the

current due to the potential difference V' would lead to a magnetic force which would slow

down the motion of the rod.



