UNL - Department of Physics and Astronomy

Preliminary Examination - Day 11
Friday, May 23, 2025

This test covers the topics of Thermodynamics and Statistical Mechanics (Topic 1) and Classical
Mechanics (Topic 2). Each topic has 4 “A” questions and 4 “B” questions. Work two problems
from each group. Thus, you will work on a total of 8 questions today, 4 from each topic.

Note: If you do more than two problems in a group, only the first two (in the order they appear in

this handout) will be graded. For instance, if you do problems Al, A3, and A4, only Al and A3
will be graded.

WRITE YOUR ANSWERS ON ONE SIDE OF THE PAPER ONLY
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Thermodynamics and Statistical Mechanics Group A
Answer only two Group A questions

2
Al. For a wire with equation of state F = bT (%0 - %), where L is the length, Ly (T) is the length
when the tension F is zero, b is a constant. Calculate the work done by the environment when the

length changes from L, to LZ—O at constant temperature.

. o 7\3
A2. At low temperature, the constant volume molar specific heat of a solidis €, = a (9—) , where
D

Op is called Debye temperature. Consider a solid with a = 1.94 kJ/mol/K and 6p= 27 °C, calculate
the heat per mole the solid needs to absorb to increase temperature from 5 K to 10 K.

A3. Calculate Cp = (z—:) using the chain rule for a simple solid for which H(T,V) = Mc,T +
P

aoT — by)V and V =V, ex aoT — P)/by]. Show that the result is Cp = Mcy + _ag TV.
( 0 0 0 p 0 0 P 0 b
0

Ad4. A compressor designed to compress air is used instead to compress helium. It is found that
the compressor overheats. Explain this effect, assuming that the compression is approximatively
adiabatic, and the starting pressure is the same for both gases. For air, y = 5/3; and for helium,

y =7/5.

Thermodynamics and Statistical Mechanics Group B
Answer only two Group B questions

B1. For ideal gas, if the heat capacity of a process is constant, then the process is polytropic PV! =
constant. Assuming that C, and C,, are constants, find /.

B2. In the Einstein model of specific heat for diatomic molecules, atomic vibrations can be treated

as independent quantum oscillators with quantized energy: £, = nhw and the population of ex-

cited oscillators follow the Boltzmann distribution.

a) At thermal equilibrium, show that the average energy for the quantum oscillators is given by:
= hw

8 = eh(u/kBT_l'

Find expression for the specific heat C,, of 1 mole of the diatomic molecules. Show that it ap-

proaches the 3R limit at high temperatures, where R = Nykg is the universal gas constant

B3. A solid with heat capacity C, at temperature Ty is placed in contact with another solid with
heat capacity Cp at a lower temperature Tp. What is the change in entropy of the system after the
two bodies have reached thermal equilibrium?
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B4.
(a) How much heat is required to raise the temperature of 1000 grams of nitrogen from

—20°C to 100°C at constant pressure?
(b) How much the internal energy of the nitrogen increased?
(c) How much external work was done?
(d) How much heat is required if the volume is kept constant?

Take the specific heat at constant volume ¢, = 5 cal/mole °Cand R = 2 cal/mole °C.
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Classical Mechanics Group A
Answer only two Group A questions

Al. A playground merry-go-round has a radius 2.4 m and a moment of inertia 2100 kg'm? about a vertical
axis through its center and turns with negligible friction. a) A child applied an 18 N force tangentially to
the edge of the merry-go-round for 15 s. If the merry go-round is initially at rest, what is the angular
speed after the 15 s interval ? b) How much work did the child do on the merry-go-round ?

A2. A hoop of radius 0.10 and mass of 0.20 kg rolls down an inclined plane without slipping. It
starts from the rest at a height of 2.0 m.

(a) What is the total kinetic energy at the bottom of the inclined plane?
(b) What is the rotational kinetic energy of the hoop at the bottom?

(c) What is the translational kinetic energy at the bottom?

(d) What is the angular velocity at the bottom?

A3. An object of mass m,; moving with velocity v;; collides head-on with an object of mass m,
at rest. Suppose the two objects stick together after the collision and now move together with a
velocity vy. Show that this type of collision is always exoergic by determining the transferred en-
ergy quantity, Q = T; — Tr, from the initial and final kinetic energies. Do your calculation in
both the lab frame and center-of-mass frame. Does the value of Q@ dependent on the reference
frame?

A4. A mass m sliding horizontally is subject to a viscous quadratic drag force F = —cx?2. It is
initially moving with a velocity v, at the origin. Find the velocity v(x) as a function of the dis-
placement x and show that the mass never comes to rest.

Classical Mechanics Group B
Answer only two Group B questions

B1. A concrete board is leaned up against a wall with a 60° angle between the board and the floor. It
weighs 70 kg.

(a) Calculate the minimum possible coefficient of static friction such as no slipping occurs(b) Calculate
the force of friction between the ground and the board;

B2. A string is wrapped around a hoop of radius 3 cm and mass 20 g which falls under gravity
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(a) What is the angular acceleration of the hoop?
(b) Calculate the time it takes for the hoop to descend 0.5 m;
(c) Calculate the angular velocity of the rotating hoop after it has descended 0.5 m.

B3. Two balls of masses m1 and m» with velocities vi and v> collide elastically head-on. Find
their velocities after the collision. Analyze the case when (a) mi1=mo>, and (b) m1>>mo.

B4. A ballistic projectile of mass m = 50 grams is launched from a vehicle. The initial speed v
of the projectile is 500 m/s southward, at an angle 8 of /6 from the horizontal. Neglect the mo-
tion of the Earth.

(a) Neglecting air resistance, show that the projectile trajectory is a parabola and calculate
the horizontal range R of the projectile when the vehicle is initially stationary.

(b) If there is now a non-negligible linear air resistance, F=-c1v with ¢1=6.65x107 kg/s , find
the new horizontal range R .

Help for part (b): For |u| < 1, use the relation: In(1 —u) = —u ———— — -



Physical Constants

Speed of light ....................... c=2.998x10" m/s

Atmospheric pressure........... 101,325 Pa

Electron mass ...................... m,=9.109x10"" kg

Avogadro constant .............. N, =6.022x10% mol ™’

Boltzmann constant.............. ky =1.381x107 J/K=8.617x107 eV/K
Gas constant .............ccuveenne R =8.314 J/(mol-K)

Atomic mass unit ................ lu =1.66x10""kg

Gravitational constant ........... G=6.674x10" m’/ (kg-Sz) ; 2=9.8 m/s?

Equations That May Be Helpful

TRIGONOMETRY

sin(a + f) =sina cos f+cosasin
sin(a — ) =sina cos f —cosasin
cos(a + f) =cosacos f—sinasin
cos(a — f)=cosacos f+sinasin f
sin(26) =2sin @ cos
c0s(20) = cos’ @ —sin’ @ =1-2sin> @ =2cos’ 6 -1
singsin f = %[cos(a — fp)—cos(a + /5')]
cosacos ff = %[cos(a — ) +cos(a + ﬁ)]
sina cos B =% [sin(a + B) +sin(a — §)]
5l

sin(a + ) —sin(a — ﬁ)]

cosasin f =

For small x:
sinx ~ x—1x°

cosx~1-1x’

tanx ~ x +4x°
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THERMODYNAMICS

) d{E)
Heat capacity C, = N—Z .
paclly & dT

Molar heat capacity of diatomic gas: C, = %R .
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For adiabatic processes in an ideal gas with constant heat capacity, pV’" =const .

dU =TdS - pdV
dF =-SdT — pdV

H=U+pV
F=U-TS

G=F+pV
Q=F—-uN

() (%)
dT ), oT ),
C :[5_Qj :T(a_S]
r ar ), or ),
TdS:CVdT+T(6—Sj dv
ov ),
1(oV
K=——| —
VEGPJT
I(GV)
o =—| —
y\eor ),

Efficiency of a heat engine: n =

— 1 _ |Qout|
|Qinl |Qinl

Carnot engine: AS=0

Carnot efficiency = 1 — To/T.

The cyclic rule: (g—z)H (Z—:)T (z—:)P =-—1.

Stefan-Boltzmann’s law:

P=0oT": o=561x10*W-m™-K*
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VECTOR DERIVATIVES

Cartesian. dl=dxX+dyy+dzz; dt=dxdydz

Gradient: Vti=—XxX+—y+—12
Z

Divergence: V -v =

ax ay 0z
dv,  dvy\ . v,  Jv;\ . vy Ovy \ A
Curl: Vxv= —— ) x+ ——y+|[—=- 7
ay 0z 0z ox ox ay
, , 0%t 0%t 0%
Laplacian: V-t = — + — +

x| ay2 | az2
Spherical. dl=dri+rd06 +rsin0déd: dr =r2sin0drdode

ot . 10t - 1 0t -
ey ¢

Gradient: Vit = — _—
radten or " 790 T rsing 99
Di Vov=2L62) 4 O (sin6 vg) + —— 2%
v :Veov= —— (v, — —(sinf v —
rrersence r? or rsinf 00 “77 Ysing ¢
1 J . vy | .
Curl: VXv=— —(sinfvg) — — | T
rsinf | 00 ¢

+1 1 v, 0
r | sinf d¢p  or

L Gy L (a0 L0y 52
aplacian =—=—|rr— ———— | sinf— -
P 2ar\" or) " 72sin6 96 30 ] " 12sin20 992

. 1T 9 v, 7 -
(rv¢)]o+;[a—r(rv9)— al;](,,

Cylindrical. dl=dsS+sd¢+dzz; dr =sdsdgdz

Gradient Vi 8tA+18tq3+8tA
radient: =—s+-—— —1Z
as s d¢p 0z

Di - 18( )+18v¢+8v5
ivergence: V - v = ——(sv; __?
¢ sads s d¢ 0z
10v, Ovy |. dvy, dv. |~ 1[0 v, 1.
Cl/lrl: Vxv=|-————=~ S+ | —— ¢+_ _(SU¢)— 7
s 09 0z dz s s | os 3¢

Lavlaci vy _ Lo (ot N 1 0%t N 9%t
aplacian : =——|s— ——+ —
P s ds \  0s 52092 072
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VECTOR IDENTITIES

Triple Products
() A-BxC)=B-(CxA)=C-(AxB)
2) AxBxC)=BA-C)—C(A-B)
Product Rules
3 V(fe)=r(Vg) +g(Vf)
4 VA-B)=Ax(VxB) +Bx(VxA)+(A-V)B+B-V)A
&) V-(fA=FfV-A+A- (V)
) V-(AxB)=B-(VxA)—A-(VxB)
(7 Vx(fA)=FVxA)—-Ax(V])
8 VXx(AxB)=B-V)A—(A-V)B+A(V-B)—B(V-A)
Second Derivatives
9 V- (VxA)=0
(10) Vx(Vf)=0

(I1) Vx(VxA)=V(V.-A)—V3A

FUNDAMENTAL THEOREMS

Gradient Theorem:  [(Vf)-dl = f(b) — f(a)
Divergence Theorem: [(V-A)dt =fA - da

Curl Theorem : [(VxA)-da=¢A- dl



Preliminary Examination - page 11

CARTESIAN AND SPHERICAL UNIT VECTORS

X

=cosdr—sinf O

INTEGRALS

(sin 0 cos @)F + (cos O cos #) —sin @ ¢
¥ = (sin Osin @)F + (cos Osin #)0 + cos ¢ §
z

o ] T
J o =
n!

bn+1

J(xz +b*) " dx = ln()c+\/x2 +b2)

J.(xz +b)) 'dx = larctan (i)
b b

® n _—bx _
, x'e dx =

X

b*x? +b?

J'(xz +b2)73/2dx _

X X
BT + arctan (j
J.(x2+b2)_2dx= x +b b
2bh°

dc 1
jﬁ: Sin(x+07)

J dx 1 In x*
x(x*+b%) 2b° x> +b’
dx 1 ax—>b
J. 2.2 12 In =
ax" —-b 2ab ax+b

= — L artanh (ﬂj
ab b

.[0 x*e ™ dx= YL
*© 3 —x? 1
j x’e dx——2
2a
4 —xzd _3\/;
j X e X W
ijse_x a'x:i3
a
ijée_x dx = 15\/7i
16a




