UNL - Department of Physics and Astronomy

Preliminary Examination - Day 2
Friday, August 16, 2024

This test covers the topic of Classical Mechanics. There are 4 “A” questions and 4 “B” ques-
tions.Work two problems from each group. Thus, you will work on a total of 4 questions on this
topic, 2 from each group.

Note: If you do more than two problems in a group, only the first two (in the order they appear in

this handout) will be graded. For instance, if you do problems Al, A3, and A4, only Al and A3
will be graded.

WRITE YOUR ANSWERS ON ONE SIDE OF THE SCRATCH PAPER ONLY
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Classical Mechanics Group A
Answer only two Group A questions

Al. Consider a two-dimensional oblique elastic collision between two identical billiard balls on a
frictionless table, where one ball is initially stationary. Prove that the two balls emerge from col-
lision at the right angle to each other.

A2. A gun is fired horizontally at a block of wood of mass 1 kg which is initially at rest on a hor-
izontal floor. The bullet of mass 10 g becomes imbedded in the block, and the impact causes the
system to slide the distance 4 m before coming to rest. The initial speed of the bullet is 430 m/s.
Find the coefficient of sliding friction between the block and the floor.

A3. The distance of the Halley’s comet from the sun at the perihelion is 8.800x107 km, and its
speed at the perihelion is 54.47 km/s. Find its speed when it is at the distance 2.000x10° km from
the sun. Use GM=1.327x10%" m?/s?> where M is the sun’s mass. Obtain the answer with two-digit
accuracy. Explain why four-digit accuracy in calculation is necessary for this.

A4. Show that the kinetic energy of a two-particle system is mvem*/2+uv?/2 where m=mi+ma, v is
the relative speed, vem 1s the speed of the center of mass, and u is the reduced mass.

Classical Mechanics Group B
Answer only two Group B questions

B1. Three fixed point particles are equally spaced about the circumference of a circle of diameter
2a centered at the origin, see figure below. The force exerted by each particle on a point mass m
is attractive and given by F = —kR, where R is a vector drawn from the particle to the point
mass. The point mass is placed in the force field at time t = 0 with initial conditions r = r and
T =v,.

a) Define suitable coordinates and write down an expression for the force acting on the mass
at any time.
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b) Use Newton’s second law and solve the equation of motion for the initial conditions
given above, namely, find 7(t) in terms of 1, v, and the parameters of the system.
¢) Under what conditions, if any, are circular orbits a solution?

B2. A bead slides on a uniformly rotating straight horizontal wire in a force-free space. The an-
gular frequency of the rotation of the wire about a vertical axis is w. The bead is initially at rest
on the wire at a distance 1, from the rotation axis. Neglect the mass of the wire.

a) Find a suitable generalized coordinate for the system and write down the Lagrangian of
the system.

b) Find the equation of motion.

c) Solve the equation of motion and show that the bead’s position grows like coshw? with
time .

d) Use the 2" Newton law for rotational motion to determine the force of constraint that
keeps the bead on the wire.

B3. Consider the motion of an underdamped 1D harmonic oscillator subject to a drag force
—cx, where ¢ > 0 is a constant.

a) Write down the equation of motion and find the solution of the problem in terms of y =

c/2m, w, = +/k/m, as well as the amplitude and phase constants A and ¢.

b) Define a modified phase space by introducing coordinates (x,y) where y=dx/dt+yx. Show
that the trajectory of the underdamped oscillator in this phase space is an ellipse whose
major and minor axes decrease exponentially with time.

B4. A ball is projected, initially without rotation, at a speed vo up a rough inclined plane of incli-
nation @ and coefficient of sliding friction .

(a) Find the position of the ball as a function of time before pure rolling begins.
(b) Determine the instant #o when pure rolling begins.

(c) Find the position of the ball when pure rolling begins.

(d) Is mechanical energy conserved at ¢ < fo? At > to?



Physical Constants

Speed of light............c....... c=2.998x10* m/s

Atmospheric pressure........... 101,325 Pa

Electron mass ...........c.co...... m,=9.109x10"" kg

Avogadro constant .............. N, =6.022x10% mol™

Boltzmann constant.............. ky, =1.381x107 J/K=8.617x10"eV/K
Gas constant .............c..ceenn... R =28.314 J/(mol-K)

Atomic mass unit ................ lu =1.66x10""kg

Gravitational constant ........... G=6.674x10" m’/(kg-s*); g =9.8 m/s?

Equations That May Be Helpful

TRIGONOMETRY

sin(a + f) =sina cos f+cosasin
sin(a — ) =sina cos f —cosasin
cos(a + ff) =cosacos f—sinasin
cos(a— ) =cosacos f+sinasin
sin(26) =2sin & cos
c0s(20) = cos> @ —sin’ @ =1-2sin* @ =2cos* 6 -1
sina sin B =+[cos(a — ) —cos(a + B)]
cosa cos B =L[cos(a — f) +cos(a + B)]
sina cos 8 = [sin(a + f) +sin(a — )]
[sin(a + f)—sin(a - ﬁ’)]

1
2
cosasin ff =7
For small x:
. 1 3
sinx = x—¢x

cosle—%x2

tanxzx+%x3
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VECTOR DERIVATIVES

Cartesian. dl=dxX+dyy+dzz; dt=dxdydz

Gradient: Vti=—XxX+—y+—12
Z

Divergence: V -v =

ax ay 0z
dv,  dvy\ . v,  Jv;\ . vy Ovy \ A
Curl: Vxv= —— ) x+ ——y+|[—=- 7
ay 0z 0z ox ox ay
, , 0%t 0%t 0%
Laplacian: V-t = — + — +

x| ay2 | az2
Spherical. dl=dri+rd06 +rsin0déd: dr =r2sin0drdode

ot . 10t - 1 0t -
ey ¢

Gradient: Vit = — _—
radten or " 790 T rsing 99
Di Vov=2L62) 4 O (sin6 vg) + —— 2%
v :Veov= —— (v, — —(sinf v —
rrersence r? or rsinf 00 “77 Ysing ¢
1 J . vy | .
Curl: VXv=— —(sinfvg) — — | T
rsinf | 00 ¢

+1 1 v, 0
r | sinf d¢p  or

L Gy L (a0 L0y 52
aplacian =—=—|rr— ———— | sinf— -
P 2ar\" or) " 72sin6 96 30 ] " 12sin20 992

. 1T 9 v, 7 -
(rv¢)]o+;[a—r(rv9)— al;](,,

Cylindrical. dl=dsS+sd¢+dzz; dr =sdsdgdz

Gradient Vi 8tA+18tq3+8tA
radient: =—s+-—— —1Z
as s d¢p 0z

Di - 18( )+18v¢+8v5
ivergence: V - v = ——(sv; __?
¢ sads s d¢ 0z
10v, Ovy |. dvy, dv. |~ 1[0 v, 1.
Cl/lrl: Vxv=|-————=~ S+ | —— ¢+_ _(SU¢)— 7
s 09 0z dz s s | os 3¢

Lavlaci vy _ Lo (ot N 1 0%t N 9%t
aplacian : =——|s— ——+ —
P s ds \  0s 52092 072
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VECTOR IDENTITIES

Triple Products
() A-BxC)=B-(CxA)=C-(AxB)
2) AxBxC)=BA-C)—C(A-B)
Product Rules
3 V(fe)=r(Vg) +g(Vf)
4 VA-B)=Ax(VxB) +Bx(VxA)+(A-V)B+B-V)A
&) V-(fA=FfV-A+A- (V)
) V-(AxB)=B-(VxA)—A-(VxB)
(7 Vx(fA)=FVxA)—-Ax(V])
8 VXx(AxB)=B-V)A—(A-V)B+A(V-B)—B(V-A)
Second Derivatives
9 V- (VxA)=0
(10) Vx(Vf)=0

(I1) Vx(VxA)=V(V.-A)—V3A

FUNDAMENTAL THEOREMS

Gradient Theorem:  [(Vf)-dl = f(b) — f(a)
Divergence Theorem: [(V-A)dt =fA - da

Curl Theorem : [(VxA)-da=¢A- dl



CARTESIAN AND SPHERICAL UNIT VECTORS

% = (sin @ cos G)F + (cos O cos $)0 —sin g §
¥ = (sin @sin @)F + (cos Osin #)0 + cos ¢

Z=cosOr—-sinf 0

INTEGRALS
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Preliminary Examination - Day 2
Friday, August 16, 2024

This test covers the topic of Thermodynamics and Statistical Mechanics. There are 4 “A” questions
and 4 “B” questions. Work two problems from each group. Thus, you will work on a total of 4
questions on this topic, 2 from each group.

Note: If you do more than two problems in a group, only the first two (in the order they appear in
this handout) will be graded. For instance, if you do problems Al, A3, and A4, only Al and A3
will be graded.

WRITE YOUR ANSWERS ON ONE SIDE OF THE SCRATCH PAPER ONLY
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Thermodynamics and Statistical Mechanics Group A
Answer only two Group A questions

Al. One mole of van der Waals gas, whose equation of state is (P + a/V?)(V — b) = RT, ex-
pands from volume Vi to Vrisothermally. Calculate the work done by the gas.

A2. Show that for an ideal gas Cp-Cv=c7 TV/Kr where the thermal expansion coefficient o =
(oV/oT)p/V and isothermal compressibility K= —(0V/0P)7/V.

A3. A polytropic process is a thermodynamic process that obeys the relation: PV = C, where C
is a constant. Show that heat capacity of an ideal gas in a polytropic process is

C] = llm(Q/A T)polytropic = CV+nR/( 1 ‘l).

A4, The solar constant (radiant flux at the surface of the earth) is about 0.1 W/cm?. Find the tem-
perature of the sun’s surface assuming that it is a black body. The radius of the sun is 7 X 10°
km, and the distance from the sun to the earth is 1.5 X 108 km.

Thermodynamics and Statistical Mechanics Group B
Answer only two Group B questions

B1. One mole of diatomic ideal gas (Cv = 2.5 nR) performs a transformation from an initial state
with temperature of 291 K and volume of 21,000 ml to a final state with temperature of 305 K and
volume of 12,700 ml. The transformation is represented on the (V, P) diagram by a straight line.
Find the work performed and the heat absorbed by the system.

2
B2. Consider a wire with equation of state: F = bT (% - b), where L is the length, Lo (T) is the
0

L2
length when the tension F'is zero, b is a constant. Like for the PVT system, one can define linear
. . ] . a
thermal expansion coefficient & = %(ﬁ) , isothermal Young’s modulus Y = %(a—i) , where 4
F T

1s the area of the cross section of the wire.

b 2
a. Show thatY = —T(L+% :
ALy L

b. Find Y, for F=0.

c. For a rubber band at 7=300 K, » =1.33x102 N/K, 4 =1x10% m?, calculate the value of F
and ¥ for = =0.5, 1.0, 1.5 and 2.

0
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B3. One mole of a monoatomic gas is expanded adiabatically amd quasi-statically from an ini-
tial pressure of 2 atm and temperature 300 K to a final pressure 1 atm. Find

(a) The final volume.

(b) The final temperature.

(c) The work done by the gas.

(d) The change in the internal energy of the gas.

B4. Consider a homogeneous rod with a linear temperature distribution
T(x)= Ty + (T, — T1)x/L

in which the temperatures at the two ends are 71 and 7>. Show that after the rod reaches thermal

TlZTZ), the change of the total entropy is

N T +Ts T Ty
AS =G, (1 e e 111?])

equilibrium (with temperature

where C), is the heat capacity.



Physical Constants

Speed of light........c...c......... c=2.998x10* m/s

Atmospheric pressure........... 101,325 Pa

Electron mass ...........co...... m,=9.109x10"" kg

Avogadro constant .............. N, =6.022x10” mol™

Boltzmann constant.............. k, =1.381x107 J/K=8.617x10"eV/K
Gas constant ...............ce.e...... R =8.314 J/(mol-K)

Atomic mass unit ................ lu =1.66x10""kg

Gravitational constant ........... G=6.674x10" m’/(kg-s*); g =9.8 m/s?

Equations That May Be Helpful

TRIGONOMETRY

sin(a + f) =sina cos f+cosasin
sin(a — ) =sina cos f —cosasin ff
cos(a + ff) =cosacos f—sinasin
cos(a— ) =cosacos f+sinasin
sin(26) =2sin @ cos
c0s(20) = cos* @ —sin’ @ =1-2sin* @ =2cos’ 6 -1
sina sin B =+[cos(a — ) —cos(a + B)]
cosa cos B =1[cos(a — f) +cos(a + B)]
sina cos 3 = %[sin(a + ) +sin(a — ,B)]
el

cosasin B =L[sin(a + f) —sin(a - B)]
For small x:
sinx = x —%xS

cosle—%x2

tanx~x+%x3
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THERMODYNAMICS

. d{E)
Heat capacity C, = N——— .
pacity €, AT

Molar heat capacity of diatomic gas: C, =3 R.
For adiabatic processes in an ideal gas with constant heat capacity, pV” =const .

dU =TdS — pdV
dF = -SdT — pdV

H=U+pV
F=U-TS

G=F+pV
Q=F—-uN

(2] (%)
dr ), \or ),

B ()
»\ar ), "\or),

IHS:(}dT+T(§§J dv
v ),

1{oV
K=——| —
Vadp ),
l(an
o=—|—
vier),

Efficiency of a heat engine: n =

_ |Qout|

1Qinl 1Qinl

Carnot engine: AS=0

Carnot efficiency = 1 — To/Th.

The cyclic rule: (z_zTa)H (Z—Z)T (3—5)}) =—1.

Stefan-Boltzmann’s law:

P=ocT*; o=567x10*W-m>-K™*
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VECTOR IDENTITIES

Triple Products
() A-BxC)=B-(CxA)=C-(AxB)
2) AxBxC)=BA-C)—C(A-B)
Product Rules
3 V(fe)=r(Vg) +g(Vf)
4 VA-B)=Ax(VxB) +Bx(VxA)+(A-V)B+B-V)A
&) V-(fA=FfV-A+A- (V)
) V-(AxB)=B-(VxA)—A-(VxB)
(7 Vx(fA)=FVxA)—-Ax(V])
8 VXx(AxB)=B-V)A—(A-V)B+A(V-B)—B(V-A)
Second Derivatives
9 V- (VxA)=0
(10) Vx(Vf)=0

(I1) Vx(VxA)=V(V.-A)—V3A

FUNDAMENTAL THEOREMS

Gradient Theorem:  [(Vf)-dl = f(b) — f(a)
Divergence Theorem: [(V-A)dt =fA - da

Curl Theorem : [(VxA)-da=¢A- dl



CARTESIAN AND SPHERICAL UNIT VECTORS

% = (sin @ cos G)F + (cos O cos $)0 —sin g §
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Z=cosOr—-sinf 0
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