




        Thermal solutions. Author: Binek 
B1. Ten grams (10.0 g) of aluminium foil at 300 C (303.15 K) and 0.50 
moles of an ideal gas at 150 C (288.15 K) are placed in a container whose 
volume changes to maintain the pressure at 200 kPa. The foil and the 
gas come to equilibrium with negligible heat transfer to or from the 
container. The molar specific heat of the gas is cp=3.5 R, where R=8.314 
J/(mol K) is the universal gas constant and the specific heat capacity of 
Al is given by )Kkg/(kJ904.0cM

P = .  

a) Find the final temperature of the aluminium foil and the gas. 
Heat flowing out of the Al foil into the gas where it is used to increase the internal energy and to do work. 

0Al gasQ Q+ =  

The heat is exchanged at constant pressure. Hence 

( ) ( ) 0M
P f Al p f gasMc T T nc T T− + − =  

Solving the equation with respect to Tf  yields: 

M
P Al P gas

f M
P P

Mc T nc T
T

Mc nc
+

=
+

0.01 904 / 303.15 0.5 3.5 8.314 / 288.15 293.9 20.75
0.01 904 / 0.5 3.5 8.314 /

o
f

kg J kgK K mol J mol K KT K C
kg J kgK mol J mol K

+ × ×
= = =

+ × ×
 

             
b) Find the work done by the gas 

Δ𝑈𝑈 = 𝑄𝑄 −𝑊𝑊 
 
Rearranging yields 

𝑊𝑊 = 𝑄𝑄 − Δ𝑈𝑈 
 
 
With 𝑄𝑄 = 𝑛𝑛𝑐𝑐𝑃𝑃(𝑇𝑇𝑓𝑓 − 𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔) and Δ𝑈𝑈 = 𝑛𝑛𝑐𝑐𝑉𝑉(𝑇𝑇𝑓𝑓 − 𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔) we obtain 
 

𝑊𝑊 = 𝑛𝑛𝑐𝑐𝑃𝑃(𝑇𝑇𝑓𝑓 − 𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔)  − 𝑛𝑛𝑐𝑐𝑉𝑉(𝑇𝑇𝑓𝑓 − 𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔) 
Using 𝑐𝑐𝑃𝑃 − 𝑐𝑐𝑉𝑉 = 𝑅𝑅 yields 

𝑊𝑊 = 𝑛𝑛𝑛𝑛(𝑇𝑇𝑓𝑓 − 𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔)  
 

𝑇𝑇𝑓𝑓 − 𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔 = 293.9𝐾𝐾 − 288.15𝐾𝐾 = 5.75𝐾𝐾 
 

𝑊𝑊 = 0.5 𝑚𝑚𝑚𝑚𝑚𝑚 ×
8.314𝐽𝐽
𝑚𝑚𝑚𝑚𝑚𝑚 𝐾𝐾

 5.75𝐾𝐾 = 23.9 𝐽𝐽  
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A2. Consider an ideal gas in a container of adjustable volume, V, which in addition allows for control 
of the temperature, T. If you want to achieve that the pressure, P, increases linearly with the volume 
according to P=AV with A=const you have to increase the temperature while the volume increases. 

a) Find the functional form T=T(V) which allows to realize P=A V.  

𝑃𝑃 =
𝑛𝑛𝑛𝑛𝑛𝑛
𝑉𝑉

= 𝐴𝐴 𝑉𝑉 
Hence 

𝑇𝑇(𝑉𝑉) =
𝐴𝐴𝑉𝑉2

𝑛𝑛𝑛𝑛
 

    
b) The temperature of the container is increased to Tf while the pressure changes according to 

P=AV and the volume increases from Vi=V0 to Vf=2V0. Find the work done by the gas in terms 
of n, R and Tf.                     

 
Hint: In case you could not solve a) express the work in terms of A and V0 for partial credit. 

𝑊𝑊 = � 𝑃𝑃𝑃𝑃𝑃𝑃
𝑉𝑉𝑓𝑓

𝑉𝑉𝑖𝑖
=

1
2
𝐴𝐴�𝑉𝑉𝑓𝑓2 − 𝑉𝑉𝑖𝑖2� =

3
2
𝐴𝐴𝑉𝑉02 

Using  

𝑇𝑇(𝑉𝑉) =
𝐴𝐴𝑉𝑉2

𝑛𝑛𝑛𝑛
 

And thus  

𝑇𝑇𝑓𝑓 =
𝐴𝐴𝑉𝑉𝑓𝑓2

𝑛𝑛𝑛𝑛
=

4𝐴𝐴𝑉𝑉02

𝑛𝑛𝑛𝑛
 

We obtain 
 

𝐴𝐴𝑉𝑉02 =
𝑛𝑛𝑛𝑛
4
𝑇𝑇𝑓𝑓 

And therefore 

𝑊𝑊 =
3
2
𝐴𝐴𝑉𝑉02 =

3
8
𝑛𝑛𝑛𝑛𝑇𝑇𝑓𝑓 

 
 

 

B2. A certain volume of water with constant heat capacity 𝐶𝐶𝑃𝑃 is initially at 𝑇𝑇𝑖𝑖. It is brought into contact 
with a heat reservoir at temperature 𝑇𝑇𝑟𝑟. 

a) What is, ΔStotal, the entropy change of the entire system (water and reservoir) when the 
water reaches the temperature of the heat reservoir?  Assume that in good approximation 
the volume of the water doesn’t change on temperature change.  
Express the answer in terms of 𝐶𝐶𝑃𝑃, 𝑇𝑇𝑖𝑖, and 𝑇𝑇𝑟𝑟 .       

Hint: Think about sign of the heat flow from or into the reservoir.  

 



Δ𝑆𝑆𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝐶𝐶𝑃𝑃 �
𝑑𝑑𝑑𝑑
𝑇𝑇

𝑇𝑇𝑟𝑟

𝑇𝑇𝑖𝑖
= 𝐶𝐶𝑃𝑃 ln

𝑇𝑇𝑟𝑟
𝑇𝑇𝑖𝑖

 

Δ𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑄𝑄
𝑇𝑇𝑟𝑟

=
−𝐶𝐶𝑃𝑃(𝑇𝑇𝑟𝑟 − 𝑇𝑇𝑖𝑖)

𝑇𝑇𝑟𝑟
= −𝐶𝐶𝑃𝑃(1−

𝑇𝑇𝑖𝑖
𝑇𝑇𝑟𝑟

) 

 

b) Show that ΔStotal(
𝑇𝑇𝑟𝑟
𝑇𝑇𝑖𝑖

) ≥ 0 for all 𝑇𝑇𝑟𝑟
𝑇𝑇𝑖𝑖

> 0 by discussing and sketching the function  

ΔStotal(
𝑇𝑇𝑟𝑟
𝑇𝑇𝑖𝑖

).   

ΔStotal =  Δ𝑆𝑆𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + Δ𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐶𝐶𝑃𝑃 ln
𝑇𝑇𝑟𝑟
𝑇𝑇𝑖𝑖
− 𝐶𝐶𝑃𝑃(1 −

𝑇𝑇𝑖𝑖
𝑇𝑇𝑟𝑟

) 

The total entropy increases because the process is irreversible. 
 ΔStotal �

𝑇𝑇𝑟𝑟
𝑇𝑇𝑖𝑖
� = 𝐶𝐶𝑃𝑃 ln 𝑇𝑇𝑟𝑟

𝑇𝑇𝑖𝑖
− 𝐶𝐶𝑃𝑃(1− 𝑇𝑇𝑖𝑖

𝑇𝑇𝑟𝑟
) ≥ 0 all 𝑇𝑇𝑟𝑟

𝑇𝑇𝑖𝑖
> 0.  

To see that we discuss the function ΔStotal(𝑥𝑥) = 𝐶𝐶𝑃𝑃 ln 𝑥𝑥 − 𝐶𝐶𝑃𝑃(1− 1
𝑥𝑥
) 

Finding extremum: 
𝑑𝑑ΔStotal(𝑥𝑥)

𝑑𝑑𝑑𝑑
= 𝐶𝐶𝑃𝑃 �

1
𝑥𝑥
−

1
𝑥𝑥2�

= 0 

Extremum at 𝑥𝑥 = 1 
The extremum is a minimum as can be seen from  

𝑑𝑑2ΔStotal(𝑥𝑥)
𝑑𝑑𝑥𝑥2

= 𝐶𝐶𝑃𝑃 �−
1
𝑥𝑥2

+
2
𝑥𝑥3
� 

𝑑𝑑2ΔStotal(𝑥𝑥 = 1)
𝑑𝑑𝑥𝑥2

= 𝐶𝐶𝑃𝑃 > 0 

For 𝑥𝑥 ≫ 1, ΔStotal(𝑥𝑥) → ln 𝑥𝑥 and for 𝑥𝑥 → 0,  ΔStotal(𝑥𝑥) → 1
𝑥𝑥
 this can be seen, e.g., by 

expanding ln 𝑥𝑥 around 𝑥𝑥 = 1.  
With 𝑑𝑑

𝑑𝑑𝑑𝑑
ln 𝑥𝑥 = 1

𝑥𝑥
 one obtains ln 𝑥𝑥 = (𝑥𝑥 − 1) + ⋯  

Which yields ΔStotal(𝑥𝑥) ≈ 𝐶𝐶𝑃𝑃 (𝑥𝑥 − 2 + 1
𝑥𝑥
)  in the vicinity of 𝑥𝑥 = 1.  

This part is not necessary to get full credit. All they need to show is that the entropy change 
is zero for 𝑇𝑇𝑟𝑟

𝑇𝑇𝑖𝑖
= 1 and larger than zero everywhere else which is evident once showing that 

𝑇𝑇𝑟𝑟
𝑇𝑇𝑖𝑖

= 1 is a minimum and the only minimum.  



 
 

 

 

B3. A cyclic equilibrium process in n moles of an ideal gas with c RV = 2 5.  is formed of three sub-
processes: 

a → b is a constant pressure doubling of the volume; 

b → c is at constant volume with decreasing pressure; 

c → a is adiabatic. 

Assume that Vb = Vc = 2Va  

(a) Sketch the process on a PV diagram.  

 
 
  

(b) Find the heat absorbed in part a → b in terms of Ta , n, R and a number.  
a->b is a constant pressure process, hence TcnQ P∆= . Since we have an ideal gas with 
cv=2.5R, cp is given by R5.3Rcc vP =+= .  

Since the pressure is constant we calculate the temperature change from 
b

b

a

a
V

nRT
V

nRT
= . With Vb=2Va we 

obtain 
a

b

a

a
V2
T

V
T

= and hence, Tb=2Ta. 



Therefore the absorbed heat reads aP TR5.3nTcnQ =∆=  

 
(c) Find the heat rejected in part b→ c in terms of Ta , n, R and a number.  
b->c is a constant volume process, hence TcnQ v∆= . The temperature in point b) is Tb=2Ta. The 
temperature in point c) is determined with the help of the equation for the adiabatic change 

between c) and a). From .constPV =γ  we obtain with the help of the ideal gas equation of state: 
1

aa
1

cc VTVT −γ−γ = . With Vc=Vb=2Va we obtain 

1

ac 2
1TT

−γ







=

 where 
4.1

5.2
5.3

c
c

V

p
===γ

 
This yields a

4.0
av nRT105.3)25.0(RT5.2nTcnQ −=−=∆=  

 
  

(d) Find the energy efficiency of the cycle. Give a numerical answer.  

The energy efficiency is defined according to 
in

out

Q
Q

1−=η . This yields for our example: 

%4.11114.0
5.3

105.31 ==−=η
 

  
 

A4. Air ( approximated as an ideal gas with c RV = 2 5. ) initially at 293K ( 20 C° ) is adiabatically 
compressed  

(a) Find the final temperature when the compression ratio V Vf 0  is 1 10 (as is typical in 
gasoline engines).  

We use the formula derived in the above problem 1
ff

1
oo VTVT −γ−γ = . We obtain: 

( ) K736K10293
V

V
TT 4.0

1
f

1
o

of ===
−γ

−γ

 

(b) Find the final temperature when the compression ratio V Vf 0  is 1 20 (as is typical in 
diesel engines).           

( ) K971K20293
V

V
TT 4.0

1
f

1
o

of ===
−γ

−γ
 

  

A3. Of the 20 faces in 10 coins, 13 are tails: 5 tails on the 5 normal coins plus 8 tails on the 4 two-tail 
coins. Of these 13 tails, there are 5 tails on normal coins. 

Hence, the probability of drawing a tail on a normal coin under the condition that a tail was drawn is  

5 out of 13 = 5/13 = 38.4% 



 



Sample Prelim Questions

May 10, 2022

The first four problem are at the physics 211H level. The following four
problems are at a physics 311 level.

Problem 1

Figure 1: Problem 1

Three identical open-top containers are filled to the brim with water. Toy
ducks float in two of the containers, as shown. Rank the containers plus
contents according to their weight, e.g. (a) > (b) = (c). Explain your
reasoning.

Solution:
The buoyant force is given by the weight of the volume of water displaced,
which is equal to the weight of the floating object displacing the fluid. Thus,
(a) = (b) = (c).
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Problem 2

Figure 2: Problem 2

Three pipes with smooth walls rest in an open box (width 3D) with a hor-
izontal bottom and vertical walls. Two of the pipes have diameter D and
weight W1 and sit on the bottom of the box with centers separated by dis-
tance 2D. The third pipe has diameter 2D and weight W2 and rests on the
other pipes, as shown. Calculate the force on each of the vertical walls.

Solution:
This is a static equilibrium problem. Let ND be the normal force of the floor
of the container acting on a pipe of diameter D, N2D be the normal force
between pipes of diameter D and 2D, and FV be the force on each of the
vertical walls. Let θ be the angle that a line connecting the centers of the
pipes of diameters D and 2D makes with the horizontal passing through the
centers of the pipes of diameter D. Applying Newton’s second law to the
pipe of diameter 2D gives

2
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∑
∑F2D,x = 0 = N2D cos θ − N2D cos θ 

F2D,y = 0 = 2N2D sin θ − W2

(1)

Performing the same exercise for the left pipe with diameter D yields

∑
FD,x = 0 = FV −N2D cos θ∑
FD,y = 0 = ND − N2D sin θ − W1

The equations for the right pipe of diameter D are symmetric. From above
we obtain FV = N2D cos θ and N2D = W2D

2 sin θ
and thus FV = W2

2 tan θ
. It remains

to determine tan θ which can be found with some geometry. The length of a
line connecting the centers of the pipes of diameters D and 2D is 3D

2
, and the

horizontal distance between the centers of the two pipes is D. The vertical√
5
2
D and tan θ =

√
5
2

. The force on eachdistance between the centers is thus of 
the vertical walls is then FV = W√2

5
.

3

W2/sqrt{5}
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Problem 3

Determine the wavelengths of the three lowest-frequency tones produced by
a pipe of length L that is open at both ends.

Solution: A pipe open at both ends has boundary conditions that are pres-
sure nodes (or displacement antinodes). Thus, the standing pressure in the
pipe is of the form p(x, t) = A sin kx sinωt. Applying boundary conditions,

p(0, t) = 0

p(L, t) = 0 = A sin kL sinωt

From the second equation above, it follows that sin kL = 0 or kn = n π
L

. The
tonal wavelengths are given by λn = 2π

kn
= 2L

n
. Thus, the wavelength of the

three lowest-frequency (longest wavelength) tones is given λ = 2L,L, 2L
3

.

4
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Problem 4

Consider a ball launched from level ground at a fixed angle θ and a speed
v0. The objective is to shoot the ball through a window a distance L away
that is at a height h. Find an expression for the speed v0 required to shoot
the ball through the window. Your answer depend only on the parameters
defined here and the acceleration due to gravity, g.

Solution: The components of the acceleration of the ball are ax = 0, ay =
−g, where the negative sign indicates that the acceleration due to gravity
acts downwards and g has a magnitude of 9.8 m/s2. The kinematics are then
described by the relations

vx(t) = v0 cos θ

x(t) = v0 cos θt

vy(t) = v0 sin θ − gt

y(t) = v0 sin θt− 1

2
gt2

The ball passes through the window after traveling a distance L along the
x-direction, which happens at a time T = L

v0 cos θ
. Substituting the expression

for T into that for y(t) yields

y(T ) = v0 sin θ

(
L

v0 cos θ

)
− g

2

(
L

v0 cos θ

)2

Setting y(T ) = h and solving for v0 yields

v0 =
L

cos θ

√
g

2 (L tan θ − h)

5

ifabrikant1
Sticky Note
A4

ifabrikant1
Typewritten Text
A4



Problem 5

Figure 3: Problem 5

A particle slides frictionlessly inside a spherical surface of radius R, as shown.
Show that the motion is simple harmonic for small displacements and find
the period of this motion.

Solution: Let θ be the angular coordinate of mass m measured with respect
to a vertical line that passes through the center of the spherical surface.
Let x⊥ be the coordinate along a direction tangent to the spherical surface
at the point of the mass m. The forces acting on m can be written in
terms of components that lie along the radius of the spherical surface and
perpendicular to it, yielding

∑
Fr = 0 = N −mg cos θ∑

F⊥ = ma⊥ = −mg sin θ

For small displacements, sin θ ≈ x⊥
R

and the resulting equation of motion
along a direction tangent to the spherical surface is ẍ⊥ + ω2x⊥ = 0, where

ω2 = g
R

. Thus, the motion is simple harmonic with period T = 2π
ω

= 2π
√

R
g

.

6
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Problem 8

A uniform density solid cylinder of mass M and radius R is free to rotate
about an axis, which is horizontal. The moment of inertia of the cylinder
is I = 1

2
MR2. Part of a long cable of negligible mass is wound around

the cylinder with the remainder of the cable hanging vertically. A massless
spring, with spring constant k, is attached to the end of the cable, and a
mass m is attached to the end of the spring. Determine the Lagrangian
using a suitable choice of generalized coordinates and the resulting equations
of motion. Find the conjugate momenta and Hamiltonian.

Solution: Let coordinate θ describe the angular displacement of the cylinder
and coordinate y describe the length of string from the cylinder to the spring.
Also, take the rest length of the spring to be ` and the stretch of the spring
by s, such that the total length of the spring is given by ` + s. The kinetic
and potential energies in terms of the coordinates θ, y, s are given by

T =
1

2
Iθ̇2 +

1

2
m
(
ẏ2 + ṡ2

)
=

1

2

(
m+

I

R2

)
ẏ2 +

1

2
m
(
ṡ2 + 2ẏṡ

)
U = mg(y + s+ `) +

1

2
ks2,

where in the expression for the kinetic energy the constraint Rθ − y = 0 is
imposed. The resulting Lagrangian is

L = T − U =
1

2

(
m+

I

R2

)
ẏ2 +

1

2
m
(
ṡ2 + 2ẏṡ

)
−mg(y + s+ `) − 1

2
ks2.

The equations of motion determined using Euler-Lagrange are

(
m+

I

R2

)
ÿ +ms̈+mg = 0

ÿ + s̈+ g + ω2s = 0,

where ω2 = k
m

. The conjugate momenta can be determined from the La-
grangian as

10
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py =
∂L

∂ẏ
=

(
m+

I

R2

)
ẏ +mṡ

ps =
∂L

∂ṡ
= m(ṡ+ ẏ)

and the Hamiltonian H is

H =
∑
k

pkq̇k − L =
1

2

(
m+

I

R2

)
ẏ2 +

1

2
mṡ2 +mẏṡ+mg(y + s+ `) +

1

2
ks2

The Hamiltonian is the total energy H = T + U . As the Lagrangian has no
explicit time dependence, i.e. ∂L

∂t
= 0, H is a conserved quantity.
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