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I. INTRODUCTION

Giant magnetoresistance (GMR) is one of the most fascinating discoveries in thin-film
magnetism, which combines both tremendous technological potential and deep fundamental physics.
Within a decade of GMR being discovered in 1988 commercia devices based on this phenomenon,
such as hard-disk read-heads, magnetic field sensors and magnetic memory chips, had become
available in the market. These achievements would not have been possible without a detailed
understanding of the physics of GMR, which requires a quantum-mechanical insight into the
electronic spin-dependent transport in magnetic structures.

The discovery of GMR was to a great extent due to the significant progress in thin-film
deposition techniques, which made it possible to fabricate layers of various materials with nearly a
monolayer precision. Thin films of a nanometer thickness can nowadays be routinely fabricated using
molecular beam epitaxy (MBE), sputtering and electrodeposition. By stacking such thin films in
multilayers one can create layered systems with properties, which are totally distinct from those of the
constitutive bulk materials. Metallic magnetic multilayers, which consist of severa ferromagnetic
layers separated by non-magnetic layers, are very attractive as they exhibit a broad variety of unique
electronic, magnetic, and transport properties.

Like other magnetoresistive effects, GMR is the change in electrical resistance in response to an
applied magnetic field. It was discovered that the application of a magnetic field to a Fe/Cr multilayer
resulted in a significant reduction of the electrical resistance of the multilayer.* This effect was found
to be much larger than either ordinary or anisotropic magnetoresistance and was, therefore, called
“giant magnetoresistance” or GMR. A similar, though diminished effect was simultaneously
discovered in Fe/Cr/Fe trilayers.? As was shown later, high magnetoresistance values can also be
obtained in other magnetic multilayers, such as Co/Cu. The change in the resistance of the multilayer
arises when the applied field aligns the magnetic moments of the successive ferromagnetic layers, as
is illustrated schematically in Fig.1. In the absence of the magnetic field the magnetizations of the
ferromagnetic layers are antiparallel. Applying the magnetic field, which aligns the magnetic
moments and saturates the magnetization of the multilayer, leads to a drop in the electrical resistance
of the multilayer.

In order to observe GMR one has to provide an opportunity to reorient the magnetic moments of
the ferromagnetic layers relative to one another. In magnetic multilayers this can be achieved due to
the effect of antiferromagnetic interlayer coupling,® which is a particular case of interlayer exchange
coupling. The interlayer exchange coupling is mediated by the itinerant electrons in the metalic
spacer layer and is an analogue of the Ruderman-Kittel-Kasuya Y osida (RKKY') interaction between
localized magnetic moments in a non-magnetic host metal. The interlayer exchange coupling
oscillates between ferromagnetic and antiferromagnetic as a function of the thickness of the non-
magnetic layer.* By choosing an appropriate thickness of the non-magnetic layer it is, therefore,
possible to create an antiparallel configuration of the ferromagnetic layers and then reorient (align) the
moments by an applied magnetic field.

The presence of an antiferromagnetic interlayer coupling is not, however, a necessary condition
for GMR to occur. Antiparallel alignment can also be obtained by introducing different coercivities of
the successive ferromagnetic layers®” In this case the magnetic moments of the soft and hard
magnetic layers switch at different values of the applied magnetic field providing a field range in
which they are antiparallel and the resistance is higher. Another way to change the alignment of the
magnetizations is to use a spin valve.? In the spin valve the magnetization of one ferromagnetic layer
is pinned by the exchange coupling with an adjacent antiferromagnetic layer, whereas the
magnetization of the other ferromagnetic layer is free to rotate with the applied magnetic field.
Although the measured values of GMR are higher in magnetic multilayers, spin valves are more
attractive from the point of view of applications, because only small magnetic fields need to be
applied to change the resistance. Magnetic granular solids represent another system, which displays

the GMR effect.® In these materials ferromagnetic precipitates are embedded in a non-magnetic host
metal film. The randomly-oriented magnetic moments of the precipitates can be aigned by the
applied magnetic field which resultsin a resistance drop. The various types of systemsin which GMR
is observed are shown in Fig.2.

Fig.1 Schematic representation of the GMR effect. (a): Change in the resistance of the magnetic
multilayer as a function of applied magnetic field. (b): The magnetization configurations
(indicated by the arrows) of the multilayer (trilayer) at various magnetic fields: the
magnetizations are aligned antiparallel at zero field; the magnetizations are aigned parallel
when the external magnetic field H is larger than the saturation field Hs. (c): The
magnetization curve for the multilayer.

GMR is distinguished from both ordinary magnetoresistance and anisotropic magnetoresistance
(AMR) which are aso present in layered and granular magnetic systems. Ordinary magnetoresistance
arises from the effect of the Lorentz force on the electron trajectories due to the applied magnetic
field. In contrast to GMR, it does not saturate at the saturation magnetic field and is usually small in
metals (less than 1% in fields of the order of 1 Tesla). AMR originates from the spin-orbit interaction
and causes the resistance to depend on the relative orientations of the magnetization and the electric
current. The magnetic field range in which the AMR effect occurs is governed by the field needed to
change the direction of the magnetic moment. For example, permalloy (NigFex) films, which are
presently employed in sensor applications, exhibit the AMR effect of 1-2%, the resistance change
taking place in afield range of afew Gauss.!® Contrary to anisotropic magnetoresistance, GMR arises



due to the dependence of the resistivity in layered and granular magnetic structures on the local
magnetic configuration rather than on the orientation of the applied magnetic field with respect to the
electric current.
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Fig.2 Various structures in which GMR can be observed: magnetic multilayer (a), pseudo spin
valve (b), spin valve (c) and granular thin film (d). Note that the layer thickness is of the
order of a few nanometers, whereas the lateral dimensions can vary from micrometers to
centimetres. In the magnetic multilayer () the ferromagnetic layers (FM) are separated by
nonmagnetic (NM) spacer layers. Due to antiferromagnetic interlayer exchange coupling
they are aigned antiparallel at zero magnetic field as is indicated by the dashed and solid
arrows. At the saturation field the magnetic moments are aligned parallel (the solid arrows).
In the pseudo spin valve (b) the GMR structure combines hard and soft magnetic layers.
Due to different coercivities, the switching of the ferromagnetic layers occurs at different
magnetic fields providing a change in the relative orientation of the magnetizations. In the
spin valve (c) the top ferromagnetic layer is pinned by the attached antiferromagnetic (AF)
layer. The bottom ferromagnetic layer is free to rotate by the applied magnetic field. In the
granular material (d) magnetic precipitates are embedded in the non-magnetic metallic
material. In the absence of the field the magnetic moments of the granules are randomly
oriented. The magnetic field aigns the momentsin a certain direction.

In addition to ordinary, anisotropic and giant magnetoresistance, there also exists “colossal”
magnetoresistance (CMR) which was found in doped manganite perovskites such as LagxCaMnO3
(for a recent review see ref.11). The CMR effect can be extremely large resulting in a resistance
change of afew orders in magnitude. CMR originates from a metal-insulator transition in the vicinity
of the Curie temperature and requires magnetic fields of the order of several Tesa. The latter property
makes the applicability of CMR materials fairly limited. On the other hand, tunneling
magnetoresistance (sometimes referred to as junction magnetoresistance) aroused considerable
interest recently due to possible applications in the magnetic sensor and storage industry. Tunneling
magnetoresistance (TMR) is observed in magnetic tunnel junctions, in which ferromagnetic metallic
layers are separated by athin insulating spacer layer (for recent reviews see ref.12). Similar to GMR,
TMR is determined by the relative orientation of the magnetic moments of the ferromagnetic layers.
Although both these phenomena may have similar applications, they are very distinct from the point
of view of the physics involved. GMR is observed in magnetic metallic multilayer structures and
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therefore the physics of GMR is related to spin-dependent electronic transport in complex metal
systems. On the other hand, TMR is observed in layered systems where magnetic metallic layers are
separated by an insulating spacer layer and is a consequence of spin-polarized tunneling.

Most experiments on GMR are performed by measuring the electric current in the plane of the
multilayer, i.e. within the current-in-the-plane (CIP) geometry. This geometry is currently used for the
industrial applications of GMR. Measuring the current perpendicular to the multilayer plane, i.e.
within the current-perpendicul ar-to-the-plane (CPP) geometry, is much more difficult. Thisis due to
the very small thickness of the multilayer and consequently the very low CPP resistance, which is not
easy to detect. There are several ways to solve this problem, one of which is to perform the
experiments using superconducting contacts.*® Although this technique has the advantage of relatively
simple sample preparation, measurements can be performed only at low temperatures. Other
techniques, which avoid this problem, are based on lithographically defined pillar structures,* on
growing the magnetic multilayers on prestructured (grooved) substrates®® (Fig.3a) or on
electrodeposition of the multilayer nanowires into the pores of an insulating polymer matrix*"®
(Fig.3b). CPP GMR appeared to be very attractive, because its magnitude is higher than the
corresponding magnitude of CIP GMR. In addition we will see that CPP experiments provide
important information about the mechanisms of giant magnetoresistance.
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Fig.3 Techniques for current-perpendicular-to-the-plane (CPP) GMR, which can be used at room
temperature: grooved substrates and nanowires. (8): Schematic representation of the
grooved InP substrate and a multilayer evaporated at an angle to the surface. Current flow
isindicated by the arrows. After Gijs et al.’® (b): Schematic representation of the array of
multilayer nanowiresin an insulating polymer matrix. After Piraux et al.*®

Since the discovery of GMR the theoretical treatment of this effect became the subject of much
attention. First theories of GMR were based mainly on free-electron models. Although these theories
are useful for the qualitative understanding of electronic transport in magnetic multilayers and can
provide valuable insight into the phenomenon, they cannot be applied to the quantitative treatment of
GMR, due to the complex spin-polarized electronic structure of the magnetic multilayers. It is well-
known that the band structures of transition metal ferromagnets which are mostly used in the GMR
structures are characterized by unfilled d bands which can not be described by a single parabolic band
at the Fermi energy. Recent advances in electronic transport and band structure theory have made it
possible to develop realistic multiband models and perform first-principle calculations of GMR.



These models provided new conceptua insights into the phenomenon and have extended our
fundamental understanding of GMR.

Reviews on GMR have been published by Fert and Bruno,*® Levy®® and Dieny® covering the
field upto 1994. Other reviews by Gijs and Bauer,?? Ansermet,?® Bass and Pratt,? Fert and Piraux®
and Gijs™ are devoted specifically to the CPP GMR. Very recently two review papers by Coehoorn?’
and by Barthelemy et al.?® have appeared. The first one highlights the theoretical and experimental
results, which are of particular interest for applications of spin valves in read heads. The second one
discusses the nature of GMR by accenting the importance of CPP geometry and gives a full list of
experimental papers.

The present review is devoted to the physics of giant magnetoresistance. We emphasize the role
of the spin-polarized electronic band structure, which is crucia for understanding GMR. In section |1,
the origin of GMR is explained and a simple resistor model is introduced. In section II, we overview
the experimenta data on CIP GMR in magnetic multilayers and spin valves and discuss the
dependence of GMR on composition, layer thickness, roughness, impurities, outer boundaries and
temperature. The theoretical formulations of GMR within free-electron and simple tight-binding
models are reviewed in section IV both from the semiclassical and quantum mechanical viewpoints.
Multiband models for GMR are reviewed in section V. Starting from the ballistic regime of
conduction, we discuss both the semiclassical and quantum mechanical approaches to GMR within
the diffusive limit. The mechanisms, which are responsible for GMR, are discussed and the
interpretation of selected experimental results is presented. A separate section V1 is devoted to CPP
GMR, which has recently attracted much attention due to new experimental and theoretical results. In
conclusion, we indicate directions for future work on GMR.

II. ORIGIN OF GMR

GMR can be qualitatively understood using the Mott model, which was introduced as early as
1936 to explain the sudden increase in resistivity of ferromagnetic metals as they are heated above the
Curie temperature.”® There are two main points proposed by Matt. First, the electrical conductivity in
metals can be described in terms of two largely independent conducting channels, corresponding to
the up-spin and down-spin electrons, which are distinguished according to the projection of their
spins along the quantization axis. The probability of spin-flip scattering processes in metals is
normally small as compared to the probability of the scattering processes in which the spin is
conserved. This means that the up-spin and down-spin electrons do not mix over long distances and,
therefore, the electrical conduction occurs in parallel for the two spin channels. Second, in
ferromagnetic metals the scattering rates of the up-spin and down-spin electrons are quite different,
whatever the nature of the scattering centers is. According to Mott, the electric current is primarily
carried by electrons from the valence sp bands due to their low effective mass and high mobility. The
d bands play an important role in providing final states for the scattering of the sp electrons. In
ferromagnets the d bands are exchange-split, so that the density of states is not the same for the up-
spin and down-spin electrons at the Fermi energy. The probability of scattering into these states is
proportiona to their density, so that the scattering rates are spin-dependent, i.e. are different for the
two conduction channels. Although, as we will see below, this picture is too simplified in a view of
the strong hybridization between the sp and d states, it forms a useful basis for a quaitative
understanding of the spin-dependent conduction in transition metals.

Using Mott’'s arguments it is straightforward to explain GMR in magnetic multilayers. We
consider collinear magnetic configurations, as is shown in Fig.4, and assume that the scattering is
strong for electrons with spin antiparallel to the magnetization direction, and is weak for electrons
with spin paralel to the magnetization direction. This is supposed to reflect the asymmetry in the
density of states at the Fermi level, in accordance with Mott’s second argument. For the parallel-

aligned magnetic layers (the top panel in Fig.4a), the up-spin electrons pass through the structure
amost without scattering, because their spin is parallel to the magnetization of the layers. On the
contrary, the down-spin electrons are scattered strongly within both ferromagnetic layers, because
their spin is antiparallel to the magnetization of the layers. Since conduction occurs in paralel for the
two spin channels, the total resistivity of the multilayer is determined mainly by the highly-conductive
up-spin electrons and appears to be low. For the antiparallel-aligned multilayer (the top panel in
Fig.4b), both the up-spin and down-spin electrons are scattered strongly within one of the
ferromagnetic layers, because within the one of the layers the spin is antiparallel to the magnetization
direction. Therefore, in this case the total resistivity of the multilayer is high.
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Fig4 Schematic illustration of electron transport in a multilayer for parallel (a) and antiparallel
(b) magnetizations of the successive ferromagnetic layers. The magnetization directions are
indicated by the arrows. The solid lines are individual electron trgjectories within the two
spin channels. It is assumed that the mean free path is much longer than the layer
thicknesses and the net electric current flowsin the plane of the layers. Bottom panels show
the resistor network within the two-current series resistor model. For the parallel-aligned
multilayer (@), the up-spin electrons pass through the structure almost without scattering,
whereas the down-spin electrons are scattered strongly within both ferromagnetic layers.
Since conduction occurs in parallel for the two spin channels, the total resistivity of the
multilayer is low. For the antiparallel-aligned multilayer (b), both the up-spin and down-
spin electrons are scattered strongly within one of the ferromagnetic layers, and the total
resistivity of the multilayer is high.

The same arguments can be used for understanding GMR in granular materials. In the absence of
a magnetic field, the magnetic moments of the ferromagnetic granules are randomly-oriented. This
implies that both up- and down-spin electrons are scattered strongly by the granules, the magnetic
moments of which are close to antiparallel. The resistance in this case is large. When a saturating
magnetic field is applied, the magnetic moments are aligned and the resistanceis low, like in the case
of the parallel-aligned multilayer.

Therefore, as was originally suggested by Baibich et al.,* spin-dependent scattering is the primary
origin of GMR. An understanding of the microscopic mechanisms, which cause spin-dependent
scattering in magnetic systems, is one of the most important questions, which this review attempts to
answer. In addition, we will see that there are other mechanisms distinct from spin-dependent



scattering which are important for understanding GMR and which will also be addressed in this
review. We start now from a qualitative picture for the spin-dependent conduction in ferromagnets.

1. Spin-dependent conduction

According to Mott’s first argument, the conductivity of a metal is the sum of the independent
conductivities for the up-spin and down-spin electrons:

0=0 +0,. (1)

Within each conduction channel the conductivity is determined by various factors. In order to
illustrate their role we use the Drude formula (e.g., ref.30) which can be expressed as follows:

_€k

Obruge = e
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Here Opbruge is the Drude conductivity per spin, e? [ =0.387110* Q! is the spin conductance
quantum, ke is the Fermi momentum, and A is the mean free path, which is the product of the
relaxation time 1 and the Fermi velocity Ve, i.e.

A=VET. (2.3

We do not display explicitly the spin indices here — it is assumed that al the above quantities are in
general spin-dependent. Although the Drude formula is valid only for free electrons, it is useful to
understand qualitatively the factors affecting the spin-dependent conductivity.

The conductivity is determined by the electrons which have the Fermi energy. Due to the Pauli
exclusion principle the electrons which lie below the Fermi level can not gain energy responding to
the small applied electric field, because al the states at higher energies are occupied. As a
consequence, only electrons at the Fermi level can contribute to the electric current. As can be seen
from Eq.(1.2), the conductivity is proportional to the cross sectional area of the Fermi surface ~ k7,
which characterizes the number of electrons contributing to the conduction. The mean free path
depends of the Fermi velocity and the relaxation time, the latter can be estimated from the Fermi
goldenrule
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Here <Vm2> is an average value of the scattering potential and n(Eg) is the density of electronic states

at the Fermi energy Er for the appropriate spin.

Although al the quantities which enter expressions (1.2)-(1.4) are in general spin-dependent, the
origin of the spin dependence is different. The Fermi momentum ke and the Fermi velocity ve are
intrinsic properties of the metal and entirely determined by the electronic band structure of the metal.
In ferromagnetic metals these quantities are different for the up- and down-spin electrons. The density
of states at the Fermi energy n(Eg) is also determined by the spin-polarized band structure. It is the
density of states, which was referred to by Mott, arguing that the scattering rates in ferromagnetic
metal's are spin-dependent.

On the contrary, the scattering potential which enters Eq.(1.4) is not an intrinsic property of the
metal. It is generated by the scatterers such as defects, impurities, or |attice vibrations. The scattering
potential can be either spin-dependent or spin-independent, which is determined by the particular
mechanism of scattering. For example, spin-dependent scattering potentials produced by impuritiesin
dilute magnetic alloys leads to the spin asymmetry of the conductivity in these alloys.** This has to
be taken into account when treating GMR in magnetic layered systems in which ferromagnetic layers
are often alloys such as permaloy NigFex. Spin-dependent scattering potentials might also

contribute to GMR at the interfaces between ferromagnetic and non-magnetic layers. In real magnetic
multilayers these interfaces are not ided. Interfacia roughness and/or substitutional disorder (i.e.
mixing of the adjacent metal atoms at the interface) are always present in experiments. Randomness
of the atomic potentials at the interface results in enhanced interfacial scattering. If for one spin
orientation the atomic potentials of the magnetic and nonmagnetic atoms are similar but for the other
spin orientation they are dissimilar, then one would expect a strong spin-dependent scattering due to
the spin dependence in the scattering potential.

The relative importance of spin-dependent scattering potentials can, however, be diminished in
real GMR structures which are far from being perfect. Various types of defects such as grain
boundaries, stacking faults and misfit dislocations are always present in the multilayers. Because the
relaxation time in Eq.(1.4) is determined by the configurationally-averaged value of the scattering
potential squared, various types of scattering centers can make this average val ue spin-independent. In
these circumstances the spin-polarized band structure of the multilayer becomes decisive and usually
gives the dominant contribution to the spin dependence of the mean free path and the conductivity.

2. Roleof band structure

The electronic band structure of the multilayer is probably the most important property which
determines the spin-dependent conduction and consequently is responsible for the GMR. In most
experiments on GMR the ferromagnetic 3d transition metals Co, Fe and Ni, and their aloys, such as
permalloy NigoFex, are used in combination with non-magnetic spacer layers, such as Cr or the noble
metals Cu, Ag and Au. The eectronic band structure of these metals is characterized by a number of
similar features which we discuss below.

Due to the spin-orbit coupling of the 3d transition metals being very weak the electronic structure
for the up-spin and down-spin electrons can be considered independently. The 3d elements are
characterized by the presence of the 4s, 4p and 3d valence states, which are distinguished by their
orbital momentum. The 4s and 4p states create a dispersive sp band which is similar to afree-electron
band. The sp electrons have a high velocity, alow density of states and consequently along mean free
path, i.e. they may be thought to be mainly responsible for the conductivity in 3d metals. On the
contrary, the d band is localized in a relatively narrow energy window and is characterized by a high
density of states and a low velocity of electrons. In the interval of energy where the sp and d bands
cross, they can not be considered as independent because of the strong sp-d hybridization, which
modifies substantially the band structure. It changes dramatically the properties of the sp electrons,
which is reflected in the band bending and results in a reduced velocity associated with the sp band.
These features are evident from Fig.5a, in which the electronic band structure of Cu is shown.

In ferromagnetic 3d metals the d band is exchange-split. Due to the localized nature of the d
electrons, two d electrons experience a strong Coulomb repulsion provided that they have antiparallel
spins and occupy the same orbital. To reduce the energy it is advantageous for the d electrons to have
parallel-oriented spins, because the Pauli exclusion principle does not permit two electrons with the
same spin to approach each other closely (i.e. occupy the same orbital) and hence the Coulomb
interaction is reduced. Therefore, the Coulomb repulsion in conjunction with the Pauli principle leads
to the ferromagnetic exchange interaction and favors the formation of a spontaneous magnetic
moment. However, putting all the electrons into states with the same spin direction increases the total
kinetic energy, the increase being larger the wider the d band or lower the d-band density of states.
There are, therefore, two competing tendencies, which have to be balanced in order to find whether
ferromagnetic ordering is favored. The condition which has to be satisfied for the appearance of
ferromagnetism is the famous Stoner criterion Jn(Eg)>1, where J is the exchange constant (which
takes the value of about 1eV for 3d transition metals) and n(Eg) is the density of states for a given
spin at the Fermi energy.>* The Stoner criterion is satisfied for bee Fe, fcc Co and fec Ni. Due to the
exchange splitting of the d bands, the number of occupied statesis different for the up-spin and down-



spin electrons, giving rise to the non-zero magnetic moments of 2.2ug, 1.7pg and 0.6y for Fe, Co and
Ni respectively. In order to distinguish between the high and low-occupied spin states, the terms
‘majority-spin electrons’ and ‘ minority-spin electrons’ are usually used. The band structure of Co asa
representative of the ferromagnetic 3d metalsis shown in Figs.5b,c.
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Fig.5 Electronic band structures (left panels) and the density of states (right panels) of Cu (&) and fcc
Co for the mgjority-spin (b) and minority-spin (c) electrons. The band structure of non-magnetic
Cu is same for the up-spin and down-spin electrons. It is characterized by the fully occupied d
bands and the presence of a dispersive sp band at the Fermi energy, which result in high
conductivity of Cu. The electronic structure of ferromagnetic Co is different for the two spin
orientations and is characterized by the exchange-split d bands. The Fermi level lies within the
sp band for the majority-spin electrons, which leads to high conductivity of majority-spin
channel. The Fermi level lies, however, within the d band for the minority-spin electrons
resulting in low conductivity of the minority-spin channel. In the latter case the sp electrons are
strongly hybridized with the d electrons, which diminishes their contribution to conduction.

The conductivity is determined by the position of the Fermi energy with respect to the d bands. In
the case of Cu, the d bands are fully occupied and the Fermi level lies within the sp band (Fig.5a).
Due to the high velocity of the electrons within the sp band and the low density of states with

resultant low probability of scattering, the mean free path is long and Cu is a very good conductor.
This is aso the case for the other noble metals Ag and Au. On the other hand, in the case of a
ferromagnetic metal like Co, as a result of the exchange splitting, the majority d band is fully
occupied, whereas the d minority band is only partly occupied (Fig.5b,c). The Fermi level lies,
therefore, within the sp band for the majority spins but within the d band for the minority spins. The
exchange splitting of the spin bands leads to a crucial difference in the conductivity between the
majority- and minority-spin electrons. For the majority spins the situation is similar to that in Cu: the
conductivity is governed by the sp electrons and is high. On the contrary, the conductivity of the
minority-spin electrons is not entirely determined by the sp electrons. Due to the strong sp-d
hybridization which mixes the sp and d states the contributions of both the sp and d electrons become
important. The minority bands represent hybridized spd bands which are not dispersive and have a
high density of states. This makes the mean free path associated with these bands relatively short and
the minority-spin conductivity low, despite a sizeable factor proportiona to the area of the multiband
Fermi surface. These arguments, which are based on the spin-polarized band structure, explain the
strong spin asymmetry in the conductivity of bulk Co.

The presence of the interfaces in a magnetic multilayer adds a new important feature to our
discussion above of spin-dependent transport in bulk elemental ferromagnets. The two adjacent
metals creating the interface have different band structures, which lead to a potential step at the
interface and results in the transmission probability across the interface being less than 1. If the
interface separates ferromagnetic and non-magnetic metals the transmission will be spin-dependent
due to the spin dependence of the band structure of the ferromagnetic layer. This can beillustrated by
considering the band structures of Co and Cu, which are shown in Fig.5. As is seen by comparing
Fig.5a and 5b, the band structure of Cu is similar to the band structure of the majority spins in Co.
This good band matching implies a high transmission for the majority-spin electrons across the Co/Cu
interface. On the contrary, as is seen from Fig.5a and 5c, there is a relatively large band mismatch
between Cu and the minority spins in Co and consequently the transmission of the minority-spin
electrons across the Co/Cu interface is expected to be poor. Therefore, the interfaces of the Co/Cu
multilayer act as spin-filters. When the filters are aligned, the majority spin-electrons can pass through
relatively easily. When the filters are antialigned, the electrons in both spin channels are reflected at
one of the interfaces. This spin-dependent transmission is an important ingredient of the electronic
transport in GMR structures.

Band matching also plays an important role in the spin-dependent interface scattering due to the
intermixing of atoms near the interfaces. If we ignore the change in the chemica state of the atoms,
i.e. assume that their atomic energy levels and magnetic moments are identical to those in the bulk of
the adjacent layers, then the intermixing at the interface produces a random potential which is strongly
spin-dependent. This spin dependence is a direct consequence of the good band matching for the
majority spins in Co/Cu, which implies a small scattering potential, and the poor band matching for
the minority spinsin Co/Cu, which implies alarge scattering potential. A similar behavior takes place
in Fe/Cr multilayers, where a very small scattering potential (good band matching) is expected for the
minority-spin electrons, but a large scattering potential (bad band matching) is expected for the
majority-spin electrons. Thus, the matching or mismatching of the bands between the ferromagnetic
and nonmagnetic metals results in spin-dependent scattering potentials at disordered interfaces, which
can contribute to GMR.

3. Resistor model
Physical insight into the origin of the current-in-the-plane (CIP) GMR can be obtained using the

very simple resistor model.**% Although this model is not able to provide a quantitative description
of the CIP GMR, it is useful as a starting point for understanding this phenomenon.
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According to the resistor model each metalic layer (and each interface) is treated as an
independent resistor. Within each spin conduction channel the resistors are added in parallel or in
series depending on the relationship between the mean free path and the layer thickness. If the mean
free path is short compared to the layer thickness, then each layer conducts the electric current
independently and the resistors should be added in parallel. It is obvious that under this circumstance
the resistance of the parallel and antiparallel configurations are the same and consequently the GMR
is zero. The above observation indicates that for obtaining non-zero GMR the mean free path should
be sufficiently long. This is consistent with the qualitative picture of GMR (the top panels of Fig.4),
which is based on the possibility for the electrons to propagate across the spacer layer freely, sensing
the magnetizations of the two consecutive ferromagnetic layers. In the limit the long mean free path
being long compared to the layer thickness, the probability of scattering within the multilayer is the
sum of scattering probabilities within each layer and each interface.®” Therefore, within a given spin
channel the total resistance is the sum of resistances of each layer and each interface, i.e. the resistors
are connected in series. This limiting case is more relevant to the magnetic multilayers exhibiting
giant magnetoresistance.

In order to build up the resistor network for the multilayer, we consider a unit cell which
consisting of the four layers, two ferromagnetic and two non-magnetic, as is shown in the top panels
of Fig.4a and 4b. We choose the global spin-quantization axis collinear to the magnetization
directions. Within each ferromagnetic layer the electron spin can be either parallel or antiparallel to
the magnetization direction. In the former case the electron is locally a majority-spin electron and in
the latter case a minority-spin electron. The majority- and minority-spin resistivities of the
ferromagnetic layer are different and are equal to p, and p, respectively. The resistance of the

bilayer, which consists of the ferromagnetic layer and the spacer layer, for either of the two spin
channelsis equal to

R, = P +p7,LdFM ) 3.1

where p\y and dyy denote the resistivity and the thickness of the non-magnetic spacer layer and
try 1S the thickness of the ferromagnetic layer. For simplicity the interface resistance between the
ferromagnetic and spacer layers has been omitted. Using the resistances which are defined by Eq.(3.1)
the equivalent network of resistors for the parallel and antiparallel magnetizations are shown in the
bottom panels of Figs.4a and 4b. The total resistance of the parallel-aligned multilayer is then given
by

R R

=N——F—, 3.2
R =Nk 32)

where N is the number of the four-layer unit cells within the multilayer. The total resistance of the
antiparallel-aligned multilayer equals to

R +R
Rp =N——. (3.3)
2
Thus, the magnetoresistance ratio is determined by the simple expression
- R -R J
E:RAP RP:(i r). (34)

R R, 4RR

Note that we use a definition in which GMR is normalized to the low resistance Rp. Although within
this definition the GMR can be larger than 100%, this definition is used in most papers devoted to
GMR, and therefore we adopt it in thisreview.
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Using Egs. (3.1) and (3.4), it is easy to pinpoint the main factors which determine GMR. Let us
first assume that the resistance of the spacer layer is small as compared to the resistance of the
ferromagnetic layers. In this limit the expression for GMR is

oR_(p.-p.f _@-’
R 4pp  4a

: (35)

where the spin asymmetry parameter is defined by a = p /p, . As is obvious from Eg. (3.5), the

magnitude of GMR is strongly dependent on the asymmetry in the resistivity between the two spin
conduction channels in ferromagnetic layers. Large asymmetry, i.e. a>>1 or a<<1, is an important
requirement for obtaining high values of GMR. If there is no spin asymmetry in the resistivity of the
two spin channels, i.e. a=1, then the GMR will be zero.

Now we use Eq.(3.5) to make an estimate of GMR in Co/Cu and Fe/Cr multilayers. If we assume
that a isentirely determined by the spin asymmetry in the scattering rates in Eq.(1.4), due to the spin-
dependent density of states at the Fermi energy, we find a=7 for Co and a=3 for Fe. For the Co/Cu
multilayer this leads to a GMR value of 130%, which is very close to the best published experimental
result of 120%.% However, for Fe/Cr Eq.(3.5) gives a GMR of 30%, which is far below the highest
ever observed value of 220%.% This is not surprising because the above model is too simplified as
GMR depends on many other factors such as the properties of the FM/NM interface which were
ignored in this estimate.

The finite resistance of the spacer layer may a so be taken into account, which leads to

AR _ (a-1)?
R 4CI-'-pdNM /dFM )(1+ pdNM /dFM)

: (36)

where p=p,, /p, . Hence, for a given value of a, the GMR will increase with decreasing

pd,, /dg, . Therefore, in order to obtain higher GMR, it is important to have alow resistivity of the
non-magnetic spacer layer. As a function of the spacer thickness dyv, the GMR decreases
monotonically and at large spacer thickness it falls off as 1/d3, . Although the drop in GMR with
increasing spacer thickness is also found in experiments, the actual dependence on dww is different
compared to this simplified model. As discussed later, the CIP GMR is found to decrease
exponentially with dyw for large spacer thicknesses. The reason for this disagreement is that the
series-resistor model is not applicable for dyw large compared to the mean free path. In the latter case,
more sophisticated models have to be applied.

The series-resistor model is able to account for the inverse GMR effect.”” Eq.(3.5) suggests that
the resistance of the paralel configuration is aways smaller than the resistance of the antiparallel
configuration. In most cases this statement is correct. However, there are exceptions. This can be
seen, by considering a multilayer, which comprises different ferromagnetic layers. Asis easy to show,
in this case the GMR equalsto

AR (a,-D)(a,-D)
R a,(1+q)+a,(1+q?)’

@7

where a; and a, are the asymmetry parameters for the two different ferromagnetic layers, i.e.
a,=pP1p® and a,=p?/p®, and q is the ratio of the up-spin resistivities in the two
ferromagnets, i.e. = p®/p®. Itis clear from Eq.(3.7) thet in the case when the two ferromagnetic

layers have different asymmetries in resistivity, i.e. a;>1 and a,<1 or vice versa, then one can expect
an inverse GMR.

The seriesresistor model can be readily generalized to include spin-dependent interface
resistances, by adding additional resistors in the network. As will be discussed in section VI, this
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mode! is a better approximation for the description of GMR within the CPP geometry,*”** rather than
the CIP geometry discussed here. For this reason it has often been used to obtain values of the spin-
dependent bulk and interface resistances from CPP experimental data.

I11. EXPERIMENTAL SURVEY

In this section we overview the main experimental results on GMR. Where it is not specified, we
discuss the current-in-the-plane (CIP) geometry. A separate section VI will be devoted to GMR within
the current-perpendicul ar-to-the-plane (CPP) geometry.

Giant magnetoresistance was discovered in 1988 by the group of Albert Fert on Fe/Cr magnetic
multilayers® and the group of Peter Griinberg on Fe/Cr/Fe trilayers.? In both cases the samples were
grown using MBE and had [001] orientation of the layers. The Cr spacer layers were about 1 nm
thick, so that the Fe layers were coupled antiferromagnetically providing an antiparallel alignment of
their magnetizations at zero applied magnetic field. As the applied field is increased, the magnetic
moments of the ferromagnetic layers progressively rotate towards the field, leading to a decrease in
the resistance of the multilayer (trilayer). At saturation the magnetizations end up in a configuration of
parallel alignment with the lowest value of the resistance. Fig.6 shows the variation in the resistance
of the Fe/Cr multilayer measured by Baibich et al.! The highest magnitude of GMR in these
experiments was found of 79% (using the definition of GMR given by formula (2.7)) at T=4.2K. The
GMR effect was ascribed to the spin-dependent transmission of the conduction electrons between the
Fe and Cr layers.

RIR(H=0)

(Fe 3nm/Cr 1.8nm)s,

0.6

05F ¢ Hs

40 -30 -20 -10 O 10 20 30 40
Magnetic field (kG)

Fig.6 Normalized resistance versus applied magnetic field for several antiferromagneticaly
coupled Fe/Cr multilayers at 4.2K. Arrows indicate the saturation field Hs, which is
required to overcome the antiferromagnetic interlayer coupling between the Fe layers and
align their magnetizations parallel. After Baibich et al.*

In 1990 a significant step towards the industrial application of GMR was made by Parkin et al.*
who demonstrated that GMR can be observed in multilayers deposited by sputtering rather than the
much slower MBE growth process. They succeeded in obtaining similar GMR values on sputtered
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polycrystalline Fe/Cr multilayers® and later found a sizeable GMR of 120% on Co/Cu multilayers.*
In the magnetic multilayers the successive ferromagnetic layers are exchange-coupled through a non-
magnetic spacer layer. Parkin et al. found that the sign of the coupling oscillates between
ferromagnetic and antiferromagnetic with increasing thickness of the spacer layer. The magnitude of
GMR is aso oscillating from afinite value to zero as the spacer thickness increases, as shown in Fig.7
for the Fe/Cr multilayer. These oscillations in GMR reflect the oscillations in the interlayer coupling.
Sizeable values of GMR are observed when the coupling is antiferromagnetic, since this provides an
antiparallel alignment of the magnetizations in the successive ferromagnetic layers at zero magnetic
field, as for der=1nm and dc=2.5nm in Fig.7. No GMR (a much diminished GMR in Fig.7) is
observed when the coupling is ferromagnetic which prevents the change in the relative alignment of
the magnetizations as the applied field is varied, as for de=1.8nm in Fig.7. As we saw earlier,
antiferromagnetic coupling is not a necessary condition for GMR to occur. All that is necessary is that
the magnetic moments of the layers are not locked by the ferromagnetic coupling, but can be
reoriented by an applied field.

30

]
o
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Cr thickness (nm)

Fig.7 Saturation magnetoresistance at 4.2K versus Cr thickness for Si(111)/Cr(10nm)/
[Fe(2nm)/Cr(t)]nCr(5nm) multilayers deposited at various temperatures: triangles and
squares - 40°C (N=30); circles - 125°C (N=20). After Parkin et al. 4

Although the highest values of GMR were measured in antiferromagnetically-coupled magnetic
multilayers, these multilayers are not the best materials for technological applications. This is due to
the large magnetic fields, which are required to saturate the magnetization of the multilayers and to
obtain a sizeable change in the resistance. For example, as is evident from Fig.6, the saturation fields
in the Fe/Cr multilayers are of the order of 10-20 kG which is three orders of magnitude higher than
the fields required for applications. The sensitivity, which is defined as AR/R per unit magnetic field,
is much too small. It is of the order of 0.01%/G, as compared, e.g., to 1%/G AMR in permalloy. A
search of low field GMR structures in which an antiparallel configuration of the magnetizations could
be achieved by different means, as compared to the aniferromagnetic interlayer coupling, resulted in
the invention of pseudo spin valves and spin valves.

The pseudo spin valves, shown in Fig.2b, combine hard and soft magnetic layers, which have
different coercivities. The magnetic moments of the soft and hard magnetic layers switch at different
values of the applied magnetic field providing a field range in which they are antiparallel and the
resistance is higher.>” In the experiments of Barnas et al.,> Co/Au/Co trilayers were used with an Au
spacer layers thick enough so that there was no exchange coupling between the Co films. Thefirst Co
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layer was evaporated on [110]-oriented GaAs, whereas the second one was grown on the Au spacer
layer, which resulted in different coercive fields of the two Co films. Fig.8a shows the hysteresis loop
for the Co/Au/Co trilayer obtained at room temperature by the magneto optic Kerr effect (MOKE). It
is seen that there is a range of magnetic fields where the magnetizations of the Co layers are aligned
antiparallel, as is indicated by the arrows in Fig.8a. Fig.8b shows the resistance trace obtained by
scanning through the hysteresis loop. At sufficiently high magnetic fields the magnetizations of both
ferromagnetic films are parallel and the resistance is low. The resistance increases, however, each
time the antiparallel alignment is achieved during a scan through the hysteresis loop.

©
®
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Fig.8 MOKE (&) and resistance (b) hysteresis loops of a Co/Au/Co trilayer with Co thickness of
10nm and Au interlayer thickness of 6nm at room temperature. The two Co films have
different coercive fields. A range of magnetic fields, in which the magnetizations of both
Co layers are aligned antiparallel and the resistance is high, is indicated by arrows. After
Barnaset al.®

A structure, which gives a much better performance from the point of view of applications, isthe
spin valve introduced by Dieny et al.® The simplest form of the spin valve structure is shown in
Fig.2c. It consists of a magnetically soft ferromagnetic layer (free layer), a non-magnetic metal spacer
layer and a second ferromagnetic layer (pinned layer), which is exchange-coupled to an
antiferromagnetic layer. The exchange coupling between the antiferromagnetic layers and the adjacent
ferromagnetic layer creates unidirectional exchange anisotropy, i.e. pins the magnetization of this
ferromagnetic layer in a certain direction (for areview see, e.g., ref.45). The magnetic hysteresis loop
of the pinned ferromagnetic layer is therefore centred about a non-zero bias field, Hg. On the contrary,
the magnetic hysteresis loop of the free layer is centred close to zero field, provided the magnetic
coupling between the ferromagnetic layers across the spacer layer is weak enough. The magnetic
moments of the two ferromagnetic layers are thus aligned antiparallel in the field range between zero
and Hg.

This behavior isillustrated in Figs.9(a,b) which show, respectively, the magnetization curve and
the change in resistance relative to parallel alignment, measured at room temperature, for a sample
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with the following structure:  Si/NigoFex(15nm)/Cu(2.6nm)/NigoFeso(I5nm)/FeMn(10nm)/Ag(2nm).2
The magnetization curve shows two separate hysteresis loops. The loop with the smaller coercivity
corresponds to the reversal of the free NiFe layer, while the loop shifted by exchange anisotropy to
around Hg=90G corresponds to the reversal of the magnetization of the pinned NiFe layer. Thus, as
the field H is swept, the magnetizations of the two NiFe layers change from parallel alignment for H
lower than 2G or higher than 135G to antiparalel aignment between these two values. It is thus
apparent that the change in resistance of Fig. 9b is related to the change in relative orientation
between the magnetizations of the two ferromagnetic layers. The steep resistance change in the small
field range close to H=0 is now used for many low field applications, such as sensors, read heads, and
magnetic random access memories.

ARIR(%)
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Fig.9 Magnetization curve (8) and relative change in resistance (b) for Si/NigyFey(15nm)/
Cu(2.6nm)/NigoFex(I5nm)/FessMnso(10nm)/Ag(2nm) spin valve. The field is applied
parallel to the exchange anisotropy field created by FeMn. Hg denotes the exchange-bias
field. After Dieny et al®

Magnetic granular materials represent another structure, which displays the GMR effect.® They
consist of a non-magnetic metal alloyed with a ferromagnetic metal, which precipitates into granules,
as is schematically shown in Fig.2d. The size of the granules depends on the solubility of the
ferromagnetic material in the nonmagnetic matrix and on growth and annealing conditions and can be
as small as 2nm. Although the granules can be magnetically coupled, in the absence of the applied
field their magnetic moments are randomly-oriented. Applying the magnetic field aigns the moments
of the granules, which results in the resistance drop. This behaviour is illustrated in Fig.10, which
displays the field dependence of the relative change in the resistance for heterogeneous CoxCuj.x
alloys for two concentrations of Co: x=0.19 and x=0.28.° Although the major part of the samples were
found to be disordered fcc aloys, the presence of Co-rich clusters results in a sizeable
magnetoresistance at low temperatures. The saturation fields, which are required to align the
moments, are as high as in the antiferromagnetically-coupled multilayers, i.e. of the order of 10kG.
This fact makes the applicability of granular materias fairly limited. In addition, the magnitude of
GMR in granular materials at room temperature is strongly reduced due to superparamagnetic
relaxation, which originates from thermal fluctuations of the magnetic moments of the granules.
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Fig.10  Magnetic field dependence of AR/R=[R(H)-R(H=20kG)]/R(H=20kG) in granular Co,Cu,.4
films. Curves a and b measured at T=100K, curve c measured at T=10K. After Berkowitz
etal.®

In the following sections we review experimental results on composition, thickness, roughness,
impurity, outer boundary, temperature and angular dependence of GMR in magnetic multilayers and
spin valves.

4. Composition dependence

Since the discovery of GMR a large number of magnetic multilayer structures, which display the
GMR effect, have been discovered. It was found that the magnitude of GMR varies considerably
depending on the chemical constituents of the multilayer. The highest published values of GMR to
date are 220% in Fe/Cr multilayers®® and 120% in Co/Cu multilayers.** Sizeable values of GMR were
also obtained in the multilayers: Co/Ag — 22% at room temperature (RT),*® Ni/Ag — 28% at 4.2K,¥
Ni/Cu — 9% at 4.2K,* NigoFex/Cu — 18% at RT,*® NigFex/Ag — 17% at RT, and NigFex/Au —
12% at RT.>! On the other hand, low GMR values of the order of 1% or less were measured in
Fe/Mo,% Fe/Au, ColCr,* Co/Al* and Collr™® multilayers. No GMR was found in NigoFex/NM/
NigoFeég/FesoMnso spin valve structures with Ta, Al, Cr and Pd as the nonmagnetic (NM) spacer
layers.

Why are some of the multilayers highly magnetoresistive, whereas the others are not? All the
above multilayers contain ferromagnetic 3d metal's, which should have a pronounced spin asymmetry
in their conductivity due to the presence of exchange split d bands. It appears that the spin asymmetry
in the band structure is a necessary but not sufficient condition for high GMR values. As was noted in
section 2, GMR to a great extent is determined by the ferromagnetic metal/nonmagnetic metal pair,
rather than by an individual material considered separately. For example, GMR was found to be much
lower in Co/Cr and Fe/Cu multilayers (3% in Co/Cr* and 5.5% in Fe/Cu®"), as compared to the Fe/Cr
and Co/Cu multilayers.

There are two factors, which are crucia for obtaining high values of GMR. These are the band
matching and the lattice matching between the ferromagnetic and nonmagnetic metals. As has been
aready explained in section 2, a good band matching for one spin orientation between a
ferromagnetic metal (FM) and a non-magnetic metal (NM) implies high transmission for this spin
across the FM/NM interface. On the other hand, a large band mismatch for the other spin orientation
implies that the transmission of this spin is poor. In addition, roughness and intermixing near the
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interfaces results in spin-dependent scattering as a consequence of the latera randomness in the
atomic potentials. Large spin dependence in scattering arises if the atomic potentials of the two types
of atoms are similar (matched) for one spin orientation but strongly dissimilar (mismatched) for the
other spin orientation.

Lattice matching of the subsequent layers is also a very important factor for GMR. Lattice
mismatch leads to the formation of misfit dislocations and other structural defects at the interfaces.
Scattering by these defects in the nonmagnetic spacer layer is spin-independent resulting in a
reduction of GMR. Although the scattering by defects in a ferromagnetic layer could be spin-
dependent, the spin asymmetry in the scattering potentials will vary depending on structural details.
The presence of various types of defects will make the average of the scattering potential only
weakly-dependent on the spin, which can lead to reduced values of GMR.

These two conditions, i.e. band and lattice matching, are almost perfectly satisfied in Co/Cu and
Fe/Cr multilayers. There is an excellent band matching between the majority-spin electrons of Co and
Cu and the minority-spin electrons of Fe and Cr. On the other hand, there is a strong band mismatch
between the minority spinsin Co and Cu and the magjority spins of Fe and Cr. The lattice matching is
also amost perfect in these systems. Thin films of Co grow in the fcc structure with the lattice
parameter of 3.56 A, which is only 2% less than the | attice parameter of 3.61 A in fcc Cu. Both Fe and
Cr have the bce structure and their lattice parameters are almost identical, i.e. 2.87 A in Feand 2.88 A
in Cr. Thus, it is not surprising that the highest values of GMR are obtained in Co/Cu and Fe/Cr
multilayers.

Ni and permalloy (NigoFexo) have the fcc structure with a lattice parameter close to that in Co and
Cu. Like Co, these materials are strong ferromagnets with entirely filled majority-spin d bands, so that
there is good band matching between the majority-spin electrons in Ni and NiggFex on the one hand
and in Cu on the other hand. This fact explains the relatively high values of GMR in Ni/Cu and
NigoFexo/Cu multilayers. Nevertheless, the magnitude of GMR in these multilayers is normally less
that in Co/Cu multilayers (e.g., refs.48,49). This difference can be explained by the stronger disorder
in magnetic moments at the Ni/Cu and NigoFex/Cu interfaces as compared to the Co/Cu interface, as
will be discussed in section 8.

The noble metals Ag and Au can serve as good spacer materials in Co-, Ni- and NigoFe,—based
multilayers and spin valves. These metals have electronic and atomic structure similar to Cu, although
not as good band and lattice matching with the 3d ferromagnets. For example, NigFex/Ag, and
NigoFexo/Au permalloy-based multilayers show GMR values of about 20% at room temperature and
reveal a high sensitivity of the resistance to the applied field, 0.29/G, and low interlayer coupling.
This combination makes them attractive for applications. Unfortunately, the growth of these
multilayers represents a real problem. For example the NigoFe,o/Ag multilayer has to be deposited at
liquid-nitrogen temperatures in order to attain the required integrity of the layers.

Other nonmagnetic materials are poor for using as spacer layers in 3d-ferromagnet-based
multilayers. For example, Al, though a good conductor, displays an unimpressive performance in
GMR structures (e.g., ref.54). It produces a strong spin-independent scattering at the interfaces due to
the electronic structure mismatch for both spin orientations. Thisis similar to what one would expect
in Co/Cr multilayers. Ta is a bad conductor due to a high density of states at the Fermi energy. It is
not surprising that GMR is negligible in systems where Tais used as a spacer layer.

It is interesting that the systems with highest GMR, such as Fe/Cr, Co/Cu, Co/Ag, NigFex/Au
and NigoFex/Ag, are all immiscible. This fact indicates that intermixing at the interfaces is not
favourable to GMR, and contradicts the expectation that intermixing produces strong spin-dependent
scattering potentials. One of the reasons for this might be a reduction in the magnetic moments in the
intermixed regions which negatively effects GMR (e.g., ref.58). In addition, the intermixing may
result in misaligned spins, which are weakly coupled with the ferromagnetic layer, or magnetically
“dead” layers. We come back to thisissuein section 7 and 8.
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A number of attempts have been made to use half-metallic materials in GMR structures.>*®! Half-
metallic compounds are characterized by the coexistence of metallic behaviour for one electron spin
and insulating behaviour for the other spin. The electronic density of states is, therefore, 100% spin-
polarized at the Fermi level, and the conductivity is dominated by single-spin charge carriers.
Calculations predict, for example, that bulk NiMnSb® and CrO,*® are half-metallic ferromagnets.
Ideally incorporation of a 100% spin-polarized ferromagnet into a GMR multilayer should lead to
switching between finite and infinite resistance within the CPP geometry as the magnetezation of
aternative ferromagnetic layers switches from parallel to antiparald, i.e. to an infinitely large GMR.
Unfortunately, experiments so far show an unimpressive behavior of GMR systems based on half
metals. The highest value of GMR of about 7% is found in CPP measurements on
NiMnSb/Cu/NiMnSb trilayers at liquid helium temperature® This result is far short of the infinite
value of CPP GMR expected from a half-metallic-based structure. A possible reason for this is the
poor quality of the NiMnSb films, in particular at the NiMnSb/spacer interfaces, resulting in a
reduced spin polarization and/or a significant spin-flip scattering due to misaligned magnetic
moments.

5. Nonmagnetic layer thickness dependence

When considering the dependence of GMR on the non-magnetic layer thickness in magnetic
multilayers and spin vaves one should compare the resistances of the perfectly paralel and
antiparallel magnetic configurations. The presence of the interlayer exchange coupling leads to
oscillationsin GMR, similar to those displayed in Fig.7. This oscillatory contribution to GMR reflects
the extent of antiparallel alignment, which is achieved at zero magnetic field, rather than an intrinsic
variation in GMR. Spin valves are in this sense better for studying the spacer thickness dependence of
GMR than magnetic multilayers. This is due to the pinned ferromagnetic layer, which keeps the
direction of its magnetization and helps to maintain an antiparallel alignment of the magnetizationsin
a certain field interval, provided that the ferromagnetic interlayer coupling is not stronger than the
exchange-bias field. However, at small spacer thicknesses the magnetic layers may become strongly
coupled ferromagnetically due to the presence of pinholes in the nonmagnetic film, leading to a
decreased GMR ratio.

The dependence of GMR on the non-magnetic layer thickness in spin valves was studied by
Dieny et al.** Fig.11 shows the variation of GMR as a function of the thickness of the non-magnetic
layer (NM) in spin valve structures with composition: Si/Co(7nm)/NM (dnm)/NigoFexn(5nm)/
FesoMnsoMn(8nm) with NM=Cu and Au. As is seen from the figure, the value of GMR decreases
monotonically with increasing non-magnetic layer thickness. This decrease can be qualitatively
ascribed to two factors. (i) With increasing spacer thickness the probability of scattering increases as
the conduction electrons traverse the spacer layer, which reduces the flow of electrons between the
ferromagnetic layers and consequently reduces GMR. (ii) The increasing thickness of the non-
magnetic layer enhances the shunting current within the spacer, which aso reduces GMR. These two
contributions to GMR can be phenomenol ogically described by the following expression:*

ﬁ_ R exp(_dNM /INM)

R ORG (+dy,/d;) ®1)

The exponential factor represents the probability that an electron is not scattered within the NM layer.
The factor in the denominator describes the shunting effect due to the NM layer. The parameter Iym is
related to the mean free path of the conduction electrons in the spacer layer. One expects that Inw will
be less than the mean free path in the spacer layer Anw, due to the fact that electrons which most
effectively contribute to GMR have out-of-plane velocities. Dieny et al.?* proposed that for systems of
practical interest Iy is approximately equal to half of the mean free path Anu. The parameter dp is an
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effective thickness, which depends on the conductance of the system in the absence of the NM layer.
(AR/R)p is anormalization coefficient.

Although formula (5.1) is a purely phenomenologica expression, it contains a significant part of
the physics involved. As we will see in section 12, within a Boltzmann approach to free electrons the
simple exponentia in expression (5.1) is replaced by more complicated exponential integrals over
various incidence angles of the conduction electrons with respect to the plane of the layers.
Nevertheless, the typical variation of GMR versus non-magnetic layer thickness remains qualitatively
the same.

It was found that the Cu and Au thickness dependence of GMR, illustrated in Fig.11, can be fitted
well by using decay lengths of Ic,=6nm and I, =5nm respectively.”* These decay lengths are
determined by scattering in the spacer, due to phonons, grain boundaries, and other defects, and are
correlated with the mean free path Ayv. The smaller value found for Au is consistent with the higher
resistivity of Au, deduced from measurements on sputtered samples: A4,=8.5nm (p=7uQcm) for Au
versus Ac,=11.5nm (p=5pQcm) for Cu.
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Fig.11  Magnetoresistance at room temperature versus thickness of the noble-metal layer in spin
valves Si/Co(70nm)/NM (dnm)/NigoFeso(5nm)/FesoMnso(8nm)/NM(1.5nm) with NM = Cu
and Au. The solid lines represent fits according to Eq.(3.1). After Dieny et al. %

Asis evident from Fig.11, the values of GMR are higher for the Cu spacer layer than for the Au
spacer layer. Indeed, extrapolation to zero interlayer thickness gives AR/R of 6.4% for Cu versus 4.1%
for Au. This fact was ascribed to a lower transmission through the ferromagnetic/noble-metal
interfaces for Au than for Cu, which reduces the intensity of the flow of electrons that continuously
escape from each ferromagnetic layer across the interfaces.** The low GMR values for Au may also
reflect the higher spin-orbit scattering expected of the heavier element, which leads to spin-flip
scattering in the spacer layer. The effect of the microstructure may also be important: the large lattice
mismatch between ferromagnetic layers and Au may result in misfit dislocations and be an additional
cause of the lower GMR.

GMR in magnetic multilayers versus thickness of the non-magnetic spacer layer behaves in a
similar fashion as in spin valves. Figs.12a,b display values of GMR in Co/Cu multilayers measured at
relatively large Cu thicknesses, so that the interlayer exchange coupling is small.® Note that the
interlayer exchange coupling decreases with increasing Cu thickness much faster than GMR, such that
the exchange coupling fields become much weaker than the saturation fields. Therefore, GMR in
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Figs.12 results from the random arrangement of magnetic domains in successive magnetic layers.
Parkin et al.®® found that at T=4.2K GMR decays approximately as 1/de, (Fig.12a), which is
consistent with Eq. (5.1) provided that the decay length Iym is large. As was explained above, this
behavior is the direct consequence of the shunting of the electric current due to increasing thickness
of the spacer layers. At room temperature the scattering within the spacer layers diminishes the flow
of electrons from one magnetic layer to neighboring magnetic layers and therefore reduces the
magnitude of GMR. Such scattering is related to volume scattering within the interior of the spacer
layers due to electron-phonon interactions. The value of GMR then decays as in Eq. (5.1) with Iym
=32nm and is shown in Fig.12b by the solid line.
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Fig.12  Saturation magnetoresistance versus Cu spacer layer thickness for several series of
multilayers of the form, Si(11l)/Ru(5nm)/[Co(l.1nm)/Cu(dc,)]¢/Ru(1.5nm). Data are shown
for temperatures of 4.2 K (a) and 295 K (b). The actual curves shown in the figure have the
form of AR/R = 0.28+55.4/(1.3+dc,) and AR/R =28.9/(0.43+dc,)exp(-dc,/31.8) at 4.2 and
295 K respectively. de,is givenin nm. After Parkin et al.*®®

As we see from the experimental results and will see from the theoretical analysis within the
semiclassical free-electron models (section 12), the mean free path appears to be the scaling length for
the thickness dependence of GMR within the CIP geometry. GMR decays monotonically as afunction
of the spacer layer thickness. The highest values of GMR can be achieved when the spacer layer is as
thin as possible and therefore has only a small amount of bulk scattering. The reduction of the spacer
layer thickness is however limited by pinholes through the nonmagnetic material, which prevent the
antiparallel alignment of the magnetizations and therefore suppress the magnetoresistance.

6. Magnetic layer thickness dependence
A typical variation of the magnitude of GMR versus the thickness of the free ferromagnetic layer
in the FM (drm)/Cu(2.2nm)/NigoFexo(5nm)/FesoM nso(8nm)/Cu(1.5nm) spin valve versus the thickness

of the ferromagnetic free layer FM = Co, NigoFes and Ni is plotted in Fig.13.% As is evident from
the figure, the three curves have very similar shapes characterized by a broad maximum between 6
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and 10nm. As was argued by Dieny,? the position of the maximum depends on the location of the
spin-dependent scattering centers. In the case of interfacial spin-dependent scattering, the maximum is
located at smaller thicknesses than for bulk spin-dependent scattering. The appearance of the
maximum is explained by the following arguments.** The decrease in GMR at large magnetic layer
thickness is due to the increasing shunting of the current in the inner part of the ferromagnetic layers.
The decrease in GMR at low thickness is due to the scattering at the outer boundaries (substrate,
buffer layer or capping layer). This scattering significantly affects GMR when the thickness of the
ferromagnetic layer becomes smaller than the longer of the two mean-free paths associated with the
up- and down-spin electrons (see also section 9).
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Fig.13  Magnetoresistance in FM(dgm)/Cu(2.2nm)/NigoFesn(5nm)/FesoMnso(8nm)/Cu(1.5nm) spin
valve versus thickness of the ferromagnetic free layer FM = Co, NigyFey and Ni at room
temperature. The solid lines represent fits according to Eq.(3.2). After Dieny et al.%

Phenomenologically, the variation of spin-valve MR with the thickness of the ferromagnetic lay-
ers can be fairly well represented by the following expression® (see Fig.13):

AR _[AR[ 1-exp(~dgy, /1p, )

an o 6.1
R ORG (L+dqy/dy) ©

The numerator describes the variation of the scattering rates of the electrons with thickness dgy. It
characterizes the angle-averaged probability for an electron with the longest mean free path to be
scattered within the ferromagnetic layer before being scattered diffusively at the outer boundary of the
spin valve. This factor is responsible for the decrease of GMR at low thicknesses dry: if the
ferromagnetic layers are too thin the contrast between the spin-dependent mean free paths decreases
due to the stronger diffuse scattering of the electrons with the longer mean free path at the outer
boundaries. |gm is therefore related to the longest mean free path in the ferromagnetic layer Agm. As
argued by Dieny,? it is expected that |sy=Y2Arm. The denominator describes the shunting of the current
within the ferromagnetic layers, so that dy is an effective thickness which represents the shunting of
the current in the rest of the structure, i.e. in all layers except the ferromagnetic layer whose thickness
isvaried. (AR/R)o is a normalization coefficient. Although a more accurate expression describes GMR
within the Boltzmann approach (see section 12), formula (6.1) contains a significant part of the
physicsinvolved.

23



In magnetic multilayers with a large number of repetitions, a maximum in the value of GMR is
normally observed when the thickness of the magnetic layers is varied from a monolayer to afew nm,
i.e. less than in spin valves. For example, Sato et al.*” have found that the optimal thickness of the
permalloy layers in (Cu/NigoFex)so multilayers is typically 1-3 nm. The main difference between the
spin valves and multilayers is the reduced effect of the outer boundary scattering for the former.
Although the decrease of GMR at high FM layer thickness can still be explained by the shunting
current within the FM layers, the decrease of magnetoresistance at small thicknesses has a different
origin and can be explained as follows.?* In the case of bulk spin-dependent scattering, the decrease of
GMR at low dey is due to insufficient scattering of the electrons with short mean free paths, which
reduces the spin-asymmetry in the conductivity. The critical thickness below which the electrons with
short mean free paths are insufficiently scattered is the mean free path of the electrons in the
ferromagnetic layers, i.e. of the order of 1-2nm in permalloy.®® In the case of interfacial spin-de-
pendent scattering, this critical thickness of the ferromagnetic material is the minimum thickness
required to establish the electronic properties of the FM/NM interface.

7. Roughness dependence

As was known from earliest experiments on Fe/Cr multilayers, GMR is very sensitive to the
growth conditions and the structure of the interfaces. It is expected that interface roughness will
enhance the magnetoresistance due to an increase in spin-dependent scattering. A number of
experiments aiming to correlate the interface roughness and GMR in magnetic multilayers have been
performed. Indeed, a few experiments have demonstrated that the value of GMR in Fe/Cr multilayers
has a tendency to increase with roughness. For example, Fullerton et al.* fabricated sputtered Fe/Cr
multilayers with variable roughness by changing the sputtering gas pressure and varying the sputtering
power. The structure of the samples was thoroughly characterized by high and low-angle X-ray
diffraction. They found that GMR is higher when the intensity of the low-angle diffraction peak is
smaller, which implies rougher interfaces. From the magnetization measurements they showed that
the enhancement in GMR is not due to the improvement in antiferromagntic alignment and concluded
that spin-dependent scattering at the interfaces is enhanced by roughness.

More recently Schad et al.” fabricated a series of high-quality epitaxial Fe/Cr(001) multilayers
characterized by a negligible number of bulk defects, so that the dominant contribution to scattering
resulted from interface roughness. The interface roughness was varied through annesling at different
temperatures and was quantitatively analyzed by specular and diffuse synchrotron X-ray diffraction
technique. Schad et al. found that the magnitude of GMR increases with decreasing the lateral
correlation length of roughness, &. This can be seen from Fig.14a, in which the triangles show the
saturation resistivity, ps, the change in the resistivity, Ap, and the GMR ratio, Ap/ps, for the samples
with constant roughness amplitude ), and variable lateral correlation length &«. A further increase in
the annealing temperature leads to increasing roughness height, 1, resulting in a further enhancement
of GMR, as can be seen from the circlesin Fig.14a.

This enhancement of GMR with interfacial roughness observed in monocrystalline Fe/Cr
multilayers is in contrast to what was observed earlier on polycrystalline Fe/Cr superlattices in
experiments by the same group.” A reduction of GMR was found with increasing the amplitude of
the interface roughness having a constant correlation length, as is shown in Fig.14b. This fact
demonstrates that spin-dependent scattering is very sensitive to the details of the microstructure of the
interfaces. For example, polycrystalline samples could provide efficient diffusion channels along the
grain boundaries, so that annealing can facilitate creating interdiffused interfaces, which according to
ref.39 reduces GMR. In addition, steps at the interfaces of the polycrystalline samples often appear at
the grain boundaries, resulting in a variable spin asymmetry in the scattering potential due to different
structural and compositional environment at the steps. On average, the scattering potential associated
with the roughness can become spin-independent resulting in areduced GMR.

24

a b

’é\ T T T T

201
\?-; 10 | Ara——aA—— g
a | c

ofb— : : : S
E 20t e &
a | L L
= 10t ’ 0 ; % s
2 10
% -ﬁ

o : : : ’§ Br
— 120 ,_/——“"—J i c 10} A
St - =
g 8or I st
Q
J A ‘ :

40 1 ! ! ! 0

0.03 0.04 0.05 0.06 0.2 0.3 0.4 0.5
n/&, (arb.un.) n (nm)

Fig.14  Transport properties of (001)-oriented monocrystalline (a) and polycrystaline (b) Fe/Cr
multilayers. Variations in the antiferromagnetic coupling are taken into account by dividing
Ap and Aplps by (1-Mg/Mg), where Mg and Mg are the remanent and saturation
magnetizations respectively. (a) The triangular data points correspond to the samples with
the constant roughness amplitude n, so that only the lateral correlation length & was
varyi r;%]7 1(b) Thelateral correlation length of the roughness is constant &~9nm. After Schad
etal. ™

From the experiments on Fe/Cr multilayers one can conclude that increasing the density of steps
and the roughness height at compositionally-sharp monocrystalline regions of the interfaces enhances
GMR in these multilayers. On the other hand, interface roughness associated with interdiffused
regions and a high density of defects, such as grain boundaries, is likely to reduce GMR.

Opposite to these Fe/Cr multilayers, no enhancement of GMR has been observed in Co/Cu
multilayers with increasing interface roughness. For example, Kano et al.”? varied the sharpness of the
interfaces in sputtered Co/Cu multilayers by changing the substrate temperature. The degree of
roughness was determined by the X-ray satellite peak intensity. They found that the GMR ratio
decreases as the substrate temperature increases and concluded that roughness reduces GMR. Suzuki
and Taga’ succeeded in preparing Co/Cu superlattices with well-controlled interfacial roughness by
magnetron sputtering. The interfaces between Co and Cu were modified by codeposition, so that the
thickness of the intermixed CoCu layer was varied from 0 to 0.25 nm. In these samples, only the
interfacial region was modified, while the morphology and the crystallinity of the multilayer remain
unchanged. They found that interfacial roughness mainly contributes to the residual resistivity and the
spin dependence of the scattering at the interfaces is weak. They also concluded that the GMR ratio
decreases with increasing interfacial roughness.

The suppression of GMR in Co/Cu multilayers with increasing interfacial roughness is probably
due to a significant change in the magnetic state of the Co atoms in the intermixed regions. The
magnetic moments of these atoms might be reduced and misaligned with the magnetization of the Co
layer. The spin asymmetry of scattering by these atoms is obviously strongly reduced, resulting in a
decrease of GMR with increasing roughness. Fe/Cr multilayers are electronically more stable with
respect to roughness, so that the electronic state of the atoms at the stepped interfacesis similar to that
in the bulk of the layers. This fact is supported by first-principle calculations which show that the
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atomic moments at the rough Fe/Cr interfaces do not depend significantly on the nearest-neighbour
environment%®

8. Impurity dependence

Since the magnitude of GMR is related to the asymmetry in the scattering rates within the two
conduction channels, it was expected that modifying the spin-dependent scattering by introducing
appropriate impurities either at the interfaces or in the bulk of the ferromagnetic layers would enhance
GMR. Scattering asymmetries have been indirectly determined from measurements of the resistivity
of magnetic ternary alloys.3*2 A number of attempts have, therefore, been made to find a correlation
between the magnitude of the scattering asymmetries in bulk magnetic aloys and the magnitude of
GMR in magnetic multilayers.

Gurney et al.” inserted thin layers (<0.4nm) of various impurities, such as Au, Ag, V, Mn, Al,
Ge, and Ir at the interfaces between Fe and Cr layers in Fe/Cr multilayers. They found that inserting
Au, Ag, Al, Ge, or Ir strongly reduces GMR, whereas, inserting V and Mn does not effect GMR
much, as compared to an inserted Cr layer of same thickness. Johnson and Camley interpreted the
results of these experiments in terms of different spin-dependent scattering asymmetries of these
impurities in bulk iron.” They found that the impurities, such as Mn and V, which have a spin-
dependent scattering asymmetry similar to that of Cr in Fe, do not change GMR substantially. On the
other hand the impurities, such as Al and Ir, with a spin-dependent scattering asymmetry opposite to
that of Cr in Fe, lead to a rapid degradation of the GMR. We note, however, that according to
Marrows and Hickey,” inserting the impurities at the interface of antiferromagnetically-coupled
multilayers could easily destroy the interlayer coupling, resulting in a reduction of GMR due to
imperfect antiferromagnetic alignment.

Parkin”’ demonstrated that inserting a very thin layer of Co at the NigoFes/Cu interfaces resultsin
adramatic increase in GMR. Fig.15a shows the room temperature resistance response to the applied
magnetic field in a Si/NiggFex(5.3nm)/Cu(3.2nm)/NigoFexn(2.2nm)/FesoM nse(9nm)/Cu(1nm) spin
valve and in the same spin valve with 0.25nm thick Co layers added at each NigoFeyo/Cu interface. As
is seen from this figure, the value of GMR increases by a factor of two, demonstrating the strong
effect of the inserted Co layer. A careful analysis of GMR as a function of the Co layer thickness
shows that the magnetoresistance can be enhanced from 2.9% up to 6.4%, the Co layer thickness scale
of the enhancement being just 0.23nm (see Fig.15b). The positive effect of the Co layers on GMR in
the permalloy-based spin valves was found to be strongly localized at the interfaces. By varying the
distance of the 0.5nm Co layer from the interface, d, no significant increase in GMR was found for
d>0.5nm (see Fig.15b). Contrary to inserting Co layers at the interfaces of permalloy-based spin
valves, adding a permalloy layer a the Co/Cu interfaces in Si/Co(5.7nm)/Cu(2.4nm)/Co(2.9nm)/
FesoMnso(10nm)/Cu(1nm) spin valves reduces the value of GMR from 6.8% to 3.9% with the
NigoFez thickness scale of just 2.8nm (see Fig.15d).

The results of these experiments are explained by the dominant contribution to GMR from spin-
dependent scattering at the interfaces. Theoretically Inoue et al.”® argued that the minority-spin
scattering at Co/Cu interfaces is larger than at NigoFex/Cu interfaces, due to the larger mismatch in
the minority-spin d atomic energy levels for the former. Experimentally, on the other hand, the effect
appears to arise from the stabilising role of Co on the magnetic moments at the interfaces. In general,
the magnetic moments at interfaces (especially rough interfaces) can be very different from those in
the bulk. Speriosu et al.” found that at room temperature there is a substantial reduction in the
magnetization of permalloy near the interfaces with Cu, which is equivalent to a magnetically-dead
layer of 0.2nm thickness. On the contrary, @ much thinner dead-layer of only 0.1nm was found for a
Co/Cu multilayer. The non-magnetic layers at the interfaces are detrimental to GMR. These layers are
a source of strong spin-independent scattering. Misoriented spins also reduce GMR due to spin
mixing and spin-flip scattering. The presence of reduced Ni moments and non-collinear Fe moments
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on interdiffused NigFex/Cu interfaces is supported by first-principle calculations.®® Placing a small
amount of Co at the interface dramatically increase the collinearity of magnetic moments and stabilise
the magnetic moments of Ni at the NigoFex/Cu interface, thereby enhancing GMR.
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Fig.15 Effect of a thin layer inserted at the interfaces in spin valves. (a) Resistance versus
magnetic field for Si/NiFe(5.3)/Cu(3.2)/NiFe(2.2)/FeMn(9)/Cu(1) spin valve without (open
circles) and with (filled circles) 0.25nm thick Co layers added at each NiFe/Cu interface.
Dependence of the saturation magnetoresistance on (b) Co interface layer thickness, dc,, in
Si/NiFe(5.3-Ae,)/Co(deo)/Cu(3.2)/Co(deo)/NiFe(2.2-dco)/ FeMN(9)/Cu(l) spin valves, (c)
distance d of a 0.5nm thick Co layer from the NiFe/Cu interfaces in Si/NiFe(4.9-
d)/Co(5)/NiFe(d)/Cu(3)/NiFe(d)/Co(5)/NiFe(1.8-d)/FeMn(9)/Cu(1) spin valves, and (d)
NiFe interface layer thickness, dyire, in SI/CO(5.7-Oire)/NiFe(dnire)/Cu(2.4)/FeNi(dnire)/
Co(2.9-0nire)/FEMN(10)/Cu(l) spin valves. Note that NiFe stands for permalloy and the
layer th7i7cknessa£ are given in nm. Experiments are performed at room temperature. After
Parkin.

A number of interesting examples of impurity effects have been obtained within the CPP
geometry. As was explained in Sec.3 using a simple series resistor model, the GMR can be inverted
(i.e. acquires an opposite sign) if the spin asymmetries in scattering are opposite in consecutive
ferromagnetic layers. Vouille et al.®* have found that NigsCrs/Cu/Co/Cu multilayers, in which Ni
layers are doped by 5% of Cr impurities, display the inverse GMR when NigsCrs thickness is more
than 2nm. According to Campbell and Fert®® Cr impurities in Ni scatter more strongly the majority-
spin eectrons, which makes the bulk scattering spin asymmetry of the NiCr layers less than unity, i.e.
anicr<l1. Thisis opposite to the Co layers, which are characterized by aco>1, resulting in the inverse
GMR. The inverse GMR was aso found in other multilayers of the type FM/Cu/Co/Cu, where
FM=Ni1.Cry, COwCry, CoixFex and Fe,V,.2®2 The comparison of the bulk scattering spin
asymmetries apy extracted from these experiments with the previous results obtained for bulk
alloys®2 shows that the sign of agy is the same but the magnitude is generally much smaller. The
inversion of GMR in the experiments of Hsu et al.®* and Vouille et al.®' appears to occur at
thicknesses of the FM layer above a certain critical thickness, so that there was a crossover in the sign
of GMR at this thickness. This was ascribed to the competition between bulk scattering in the FM,
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which has spin asymmetry anu<l, and interface scattering at the FM/Cu interface, which was
assumed to have spin asymmetry ai>1. We note, however, that at low FM thickness the interface
resistance might become dependent on the layer thickness, which would make the interpretation of
these experiments more complicated (see section V1).
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Fig.16  Position dependence of the giant magnetoresistance for various transition metal impurities in
the Co layer in Si/Ta(5nm)/Co(2.5nm-x)/ ¥ Co(x)/Cu(3nm)/Co(x)/ ¥Co(2.5nm-x)/FeMn(8nm)/
Ta(2.5nm) spin valves. Elements for which a values are available from refs.31,32 have these
values noted at the top of each panel. The graph width represents the Co layer thickness. As x
increases in each graph the J-layer moves from the Co/Cu interface to the outermost surface
of the Co layers. The graph for Co can be regarded as the control experiment. After Marrows
and Hickey.”®

Very interesting experiments have been performed recently by Marrows and Hickey™ who
inserted a very thin (sub-monolayer) &-layer of various elements in a Co/Cu/Co spin valve at various
distances from the interfaces. Some of their results are shown in Fig.16, in which the GMR ratio is
plotted against the position of the dopant &-layer for a variety of elements from the central part of the
transition metal series. As is evident from the figure, the value of GMR can be reduced or enhanced
depending on the nature of the impurity and its location within the spin valve. For example,
ferromagnetic 3d impurities Fe and Ni enhance GMR when they are close to but just behind the
Col/Cu interface. For materials with a<1, i.e. Cr, Mo, Ta, and Ru, the magnetoresistance is totally
suppressed when they are placed at the interface, but it is recovered as they move back into the bulk
of the Co layer. Materials to the right of Co, that might be expected to have a>1, namely Pd, Pt, and
the noble metals, can suppress the GMR somewhat at the interface, but it is very rapidly recovered as
they move into the layer. It was also found that 4f magnetic impurities are altogether damaging to the
GMR. A guantitative interpretation of these experimentsis a challenge for first-principle modeling.
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9. Outer boundary dependence

As we saw above, the value of GMR is higher in magnetic multilayers than in spin valves. The
latter consist of just two ferromagnetic layers separated by a nonmagnetic spacer layer. With
increasing number of FM/NM bilayers within a multilayer the value of GMR monotonically increases
until it reaches saturation. Fig.17a shows an example of such a variation of GMR, obtained by
Plaskett and McGuire®® in experiments on Cu(1nm)/[Co(1nm)/Cu(1nm)]y multilayers. They found
that at T=4.2K GMR grows up to 35% with increasing N up to 128, clearly displaying a tendency to
saturate (see Fig.17a). The lower values of GMR in these experiments as compared to those in ref.38
are explained by a weak antiferromagnetic coupling. One of the factors, which may play a role in
increasing GMR with the number of bilayers, is an improvement in the structural quality for the
thicker multilayers. However, the mgjor factor, which is responsible for the behavior of GMR versus
N shown in Fig.17a, is the presence of diffuse scattering at the outer boundaries of the multilayer.
Indeed, if the longest mean free path is much larger that the total thickness of the magnetic multilayer,
diffuse outer-boundary scattering reduces the conductivity of the “good” conduction channel and
hence effects negatively GMR. Plaskett and McGuire used the Fuchs-Sondheimer expression for thin
film resistivity®*® in order to estimate the mean free paths, as is shown in Fig.17b. They found a
mean free path of 47 nm for the saturated state of the Co/Cu multilayer, which although possibly an
overestimate gives the right order of magnitude. We see, therefore, that outer boundary scattering isa
very important characteristic of spin valves because their thickness is comparable to (or even less
than) the mean free path.
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Fig.17 GMR as a function of the number of bilayers N (8) and resistivity as a function of the
multilayer thickness d (b) in Cu(1nm)/[Co(1nm/Cu(1nm)]y multilayers, measured at
T=4.2K. GMR is determined from the resistivity at H=0 and H=18kG except for N=128,
for which H=25kG. Solid lines in (b) represent the Fuchs-Sondheimer approximation for
thick film resistivity, i.e. pd=puuk(d+3A/8), where py is the bulk resistivity and A is the
mean free path. After Plaskett and McGuire.®

The outer boundary scattering in spin valves occurs at the interfaces between the pinned layer
and the pinning layer and between the sense layer and the cap layer, which is used for protecting the
structure from oxidation or corrosion. Antiferromagnetic FesoMnse® and ferrimagnetic ThysCor,*° are
frequently used as pinning layers. The scattering at FM/FeMn and FM/TbCo interfaces is commonly
regarded as entirely diffuse due to the highly disordered atomic and magnetic structures of the
antiferromagnetic layers and the interfaces. In addition, although these materials are highly resistive
(resistivity is about 100uQcm at room temperature), they still contribute to the shunting current
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within the spin valve structure, thereby reducing GMR. The same effect occurs at the FM/Tainterface
when Tais used as the protective cap layer.

GMR in spin valves can be improved if antiferromagnetic NiO is used as a pinning layer.
Anthony et al.¥’ fabricated bottom spin valves of the type NiO/NiFe/Co/Cu/Co/NiFe and obtained a
GMR ratio of 13% at room temperature (thin Co layers at the interfaces were used to enhance
GMR™). An even higher value of GMR, namely 15%, was obtained by Swagten et al .2 in a spin
valve of the type NiO/Co/Cu/Co/Cu/NiO, in which the top NiO layer served as a protective layer and
the top Cu layer magneticaly insulated the free layer from exchange biasing. These relatively high
values of GMR are the result of the fact that NiO is an insulator and conseguently does not contribute
to the shunting current. Moreover, due to the relatively large band gap of NiO (about 4eV) it impedes
penetration of electrons into the bulk and therefore provides a mechanism for specular scattering at
the interface between the pinned and pinning layers. Contrary to diffuse scattering, specular scattering
reflects electrons back through the spin valve alowing them to propagate across the spacer layer
many times, thereby increasing spin filtering effects. The degree of specular scattering at FM/NiO
interfacesis related to the interface quality because disorder can easily make the scattering diffuse.

A certain degree of specular scattering was argued to be the origin of high values of GMR in the
experiments performed by Egelhoff et al &% on NiO-based symmetric spin valves. A symmetric spin
valve®™ contains one free ferromagnetic layer sandwiched between two pinned magnetic layers,
separated by nonmagnetic spacer layers, which allows higher magnitudes of GMR to be obtained than
in ordinary spin valves. The symmetric spin valve, which was studied by Egelhoff et al., had the
structure of NiO/Co/Cu/Co/Cu/Co/NiO and displayed GMR values exceeding 20% at room
temperature. Specular scattering of electrons at Co/CoO interfaces was al so suggested to be the reason
for the enhancement of GMR by up to 17% at room temperature, obtained in bottom spin valves of
the type NiO/Co/Cu/Co, in which the top Co layer was slightly oxidized.**® Sugita et al.%? regarded
the high magnitude of GMR of 28% obtained in an epitaxialy-grown symmetric spin valve with an a-
Fe;O3 pinning layer, i.e. a-Fe,04/Co/Cu/Co/Cu/Col/a-Fe,0s, as an indication of specular electron
reflection at the Co/a-Fe,Os interfaces.

The importance of overlayers deposited at the top outer boundary of the NiO/Co/Cu/Co spin
valve was demonstrated by Egelhoff et al.*® They found that the deposition of about 2 monolayers
(ML) of Au, Ag, or Cu increases GMR, whereas the deposition of 2ML of Ta, Si, C, or NigoFex
decreases GMR. These results were interpreted by Egelhoff et al. as evidence of enhanced specular
scattering for the case of Au, Ag, and Cu, but suppressed specular scattering for the case of Ta, Si, C,
and NigFey a the interface with Co. However, recent studies have demonstrated that the
enhancement of GMR occurs for any top Co layer thickness.® This fact contradicts the plausible
explanation in terms of specular scattering, because the specular scattering should reduce GMR if the
Co thickness is much larger than the optimum thickness (see section 12). For such Co thicknesses the
specularly reflected electrons are not able to cross the spacer layer and contribute instead to the
shunting current. Other effects seem to be important and reguire further investigations.

10. Temperature dependence

Many experiments have found that GMR decreases with increasing temperature. Typicaly, the
magnitude of GMR is a factor of two or three smaller at room temperature than at liquid helium
temperature. For example, GMR drops by a factor of 3.1 in Fe/Cr multilayers® and by a factor of 1.8
in Co/Cu multilayers® in this temperature interval.

The major factor, which contributes to the temperature variation of GMR, is inelastic scattering
by phonons. Although electron-phonon scattering conserves spin, it enhances the saturation resistivity
of the multilayer, effecting negatively the GMR ratio. In addition, it shortens the mean free path in the
spacer layer, which prevents the flow of electrons between successive ferromagnetic layers and hence
reduces GMR. Scattering by phonons in ferromagnetic metals is spin-dependent due to the spin-
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dependent density of states at the Fermi energy (see sec.3). If other spin-dependent scattering
processes are important (e.g., spin-dependent scattering at the interfaces due to interface roughness),
which are characterized by a different spin asymmetry, the contribution from electron-phonon
scattering necessarily changes GMR. Another non-trivial mechanism reducing GMR is related to
interband transitions that are driven by the applied electric field in the presence of spin-independent
scattering potentials. Thiswill be discussed in section 17.
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Fig.18  The temperature dependence of the spin-dependent parameters for Co/Cu multilayers, as
determined from the experiments on grooved substrates using the two-current series resistor
model: (a) the spin asymmetry parameter, y, of the Co/Cu interface, (b) the resistances of the
Co/Cu interface, (c) the spin asymmetry parameter of the bulk Co, S, (d) the resistivity of Co
and Cu layers. yis defined as y=(acocu-1)/(Ococutl), Where deycy is the ratio of the interface
resistances AR’ cocy and AR cocy. B is defined as B=(ac,-1)/(Ace+1), where ac, isthe ratio of
the bulk Co resistivities p' ¢, and p' . After Oepts et al.*

Ancther factor, which might influence the temperature variation of GMR, is electron-magnon
scattering. Contrary to phonons, scattering by magnons is associated with spin-flip processes which
intermix the majority- and minority-spin current channels. At high temperatures when spin
fluctuations become sizeable the electron-magnon scattering would inevitably suppress GMR.
However, whether this effect is important a room temperature and below for GMR in magnetic
multilayers based on 3d ferromagnets, which are characterized by very high Curie temperatures, still
remains unclear. Dieny et al.®® have pointed out that the presence of roughness and interdiffusion at
the interfaces weakens the magnetic interactions due to the decreased magnetic moments and the
reduced number of magnetic nearest neighbours. These “loose” spins may be more strongly affected
by temperature-dependent spin-flip processes than the spinsin the bulk of the layers. Dieny et al. have
established a correlation between the Curie temperature of the ferromagnetic metal and the slope of
the decrease in GMR in spin valves. They found that the thermal variation of GMR in spin valvesis
weaker for those ferromagnets, which have higher Curie temperature. They argued that this
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correlation is a consequence of spin-flip scattering mainly at the interfaces due to the reduced Curie
temperature of theinterdiffused interfacia regions.

Very interesting experiments on the temperature dependence of GMR with a quantitative
interpretation of the results were reported by Oepts et al.® They measured the temperature variation
of GMR in Co/Cu multilayers deposited on grooved substrates, as is shown in Fig.3a, so that the
geometry in these experiments was similar to CPP GMR. The results were analysed in terms of spin-
dependent bulk and interface resistances within the two-current series resistor model and are shown in
Fig.18. They found that the spin-dependent interface resistances are weakly temperature-dependent
(Figs.18a,b), which implies that up to room temperature the major contribution to the interface
resistances comes from elastic scattering. On the other hand, as can be seen from Fig.18d, the bulk
resistivities of Co and Cu increase by more than a factor of two between 4.2K and 300K, reflecting
the sizeable contribution from inelastic scattering. However, it was found that the spin asymmetry of
the resistivity in the Co layers, ac,, is dmost independent of temperature (Fig.18c). The results of
these experiments demonstrate, firstly, that phonons, rather than magnons, influence the spin-
dependent resistance of the Co/Cu multilayer. Scattering by magnons would inevitably reduce the
spin asymmetry of the bulk and interface resistances with increasing temperature due to spin-flip
processes. Secondly, the spin asymmetry is about the same for elastic and inelastic scattering in the
Co layers. This is evidence that the scattering spin asymmetry is mainly determined by intrinsic
properties of bulk Co, namely by its band structure.

11. Angular dependence

We have so far considered GMR that arises from parallel and antiparallel magnetizations of the
successive ferromagnetic layers. In this section we discuss the variation of the magnetoresistance as a
function of the angle between the magnetizations 6= 6;-6,. In spin valves which comprise afree and a
pinned magnetic layer a continuous change of the angle 8 can be obtained by applying arotating field,
which rotates the magnetization of the free layer, but keeps the direction of the magnetization of the
pinned layer fixed. Such an experiment was performed by Dieny et al.® It was found that there are two
components contributing to the magnetoresistance: the anisotropic magnetoresistance (AMR), which
varies as the cosine squared of the angle between the rotating magnetization and the sensing current,
and giant magnetoresistance. By subtracting the contribution from AMR, Dieny et al. found that
GMR varies linearly with cos6, and can be phenomenologically described by the formula

R(6) =R; + (Ry ~ R;)(1-cosb)/2, (11.1)

where Rp and Rap are the resistances of the spin valve for the parallel and antiparallel magnetizations
respectively. Such a linear variation of the resistance with cosf was aso observed in Fe/Cr
multilayers.%”

A theoretical consideration of the angular dependence of GMR within a quantum-mechanical
approach and a free-electron model predicts that for a constant potential within the multilayer the
conductance, rather than the resistance, should vary linearly with cos8.%®%® The same behaviour is also
predicted within the semiclassical free-electron model.?’” Such a variation was found in the
experimental study of GMR in Co/Ag/NiFe/Ag multilayers [100] and is shown in Fig.19. Although
the difference between the two descriptions is second order in the GMR ratio, it may be sizeable if the
vaue of GMR is relatively high, which is the case for the Co/Ag/NiFe/Ag multilayers studied in
ref.100. Thisis evident from Fig.19, which shows almost a perfect linear variation of the conductance
with cos6, but displays slight non-linearity in the resistance dependence. Although the free-electron
theory predicts significant departures from linearity when potential steps at the interfaces are
present,® no experiments to date have provided any evidence for such departures. First-principle
calculations'® of the angular variation of GMR suggest that the functional dependence is essentially
of the form (1-cos6), which agrees with experiments.
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Fig.19 Normalized resistance and conductance versus the cosine of the relative angle between the
magnetizations of the soft permalloy layers and hard layers composed of Co clusters for
[Co(0.4nm)/Ag(4nm)/NiFe(4nm)/Ag(4nm)].s mutliayer. After Steren et al.*®

The angular variation of GMR has been also studied within the CPP geometry.'* Although the
deviations from linear dependence of the conductance versus cos6 were found to be more pronounced
than in the CIP geometry, they still remain relatively small.

IV. FREE-ELECTRON AND SIMPLE TIGHT-BINDING MODELS

A large number of various theoretical models have been developed to describe GMR. These
models differ mainly in the way that they treat the electronic structure and the electronic transport.
The electronic structure can be described either within a simple free-electron approximation or within
an accurate multiband approach. The main advantage of the free-electron theories is that they are
physically more transparent and, though simple, can still capture some important physics of GMR.
Thisis aso the case for simple tight-binding models, which approximate the electronic structure by a
single tight-binding band. Multiband models are, however, essential for a quantitative description of
GMR. Within these models the electronic structure is described either using parameterized tight-
binding bands or first-principle calculations within the local density approximation. The electronic
transport can be considered either within semiclassical Boltzmann theory or within quantum-
mechanical theory. The Boltzmann theory of transport is a versatile formalism, which has been widely
used for treating GMR. It breaks down, however, in magnetic multilayers of practical interest because
the subband energy splitting is comparable with the life-time broadening due to scattering. In these
cases quantum-mechanical theory within a multiband treatment of the electronic structure is the best
way to describe GMR. We begin our review of theoretical models for GMR by discussing the
semiclassical Boltzmann theory within the free-electron model.

12. Semiclassical theory

The resistor model, which has been introduced in section 3, is too simple to describe correctly
CIP GMR in magnetic multilayers and spin valves. This model is based on the assumption that the
mean free path islong for both spin channels as compared to layer thicknesses. This approximation is
not justified for real layered systems because the mean free path within one of the spin channels is
comparable to or even less than the layer thickness. In addition, the resistor model is unable to predict
the asymptotic behavior of GMR for large layer thicknesses.
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A more sophisticated quantitative insight into spin-dependent transport can be obtained using the
semiclassical Boltzmann theory of transport (e.g., refs.30,103). This theory considers electron
transport using classical dynamics, which makes it different from the quantum-mechanical linear
response theory of transport that will be considered in section 13. Nevertheless, the semiclassica
theory includes many aspects of quantum mechanics. For example, within this approach quantum-
mechanica statistics is used and scattering can be calculated quantum-mechanically assuming a
realistic band structure.

Boltzmann theory is based on a semiclassical description of the electrons in metals in the
presence of external fields using a statistical distribution function. The distribution function f(r k.,t) is
defined as the number of electrons with given position r and wave-vector k at timet. We assume that
the two spin states of the electrons are uncoupled and, therefore, the distribution function can be
considered independently for the up- and down-spin channels. The Boltzmann transport equation is
obtained by balancing the change in the distribution function caused by the applied electric field and
the scattering processes that act to bring it back towards equilibrium, i.e.

LD — v, -k m, f+EP—H (120)

The first term in this equation describes the electron drift due to their velocity, the second term
reflects the acceleration of the electrons due to the applied field and the scattering term describes
scattering of the electrons by imperfections in the lattice, such as defects or impurities. It can be
written in terms of the probability R, for an electron to scatter between momentum k and k' :

D&t @m Z{Pkk [ £ (k0] (K1) = a1 F (k8] £kt (122)

where the right-hand term describes “ scattering-out” processes, in which an electron from an occupied
state of momentum k scatters into unoccupied states k', and the left-hand term describes "scattering-
in” processes, in which electrons from occupied states of momentum k' scatter into an unoccupied
state k. We are interested in a steady state solution, when the distribution function is no longer
changing so that df/dt=0 in equation (12.1). In this case, taking into account the principle of
microscopic reversibility, i.e. By = R , and assuming a uniform applied electric field &, we obtain

v(k) 0, f(r,k)—ga M, f(r.k) = ; Rac [f (k") = £(r.k)], (12.3)

where e is the absolute value of the electron charge and v is the electron velocity. Aiming at a linear
response theory, it is convenient to represent the distribution function as f(r,k) = fo(k) +9(r,k),

where g(r,k) is the deviation of the distribution function f(r k) from the equilibrium Fermi-Dirac
distribution fo(k) = {1+ exp[(E(k) - Eg )/kT]} 1 due to the applied electric field. Substituting this
forminto Eq. (12.3) and retaining only the lowest order contribution with respect to & we obtain

ofo (k)
0E(K)

v(K) T 9(r.k) —e8 (k) = Zﬂk'[g(f,k')—g(f,k)]- (12.4)

k

Thisis agenerd representation of the linearized Boltzmann kinetic equation for the description of the
electric current, the density of whichis given by

iry=-2
jn)= QZV(k)g(r,k). (12.5)

where Q is the volume of the system. However, the evaluation of Eq.(12.4) is not easy to perform
because of the scattering-in term zk, P..g(r,k"), which links the values of the distribution function

at various momenta. The Boltzmann equation can be considerably simplified using the relaxation time
approximation. Within the relaxation time approximation the scattering-in term is neglected which
resultsin

ofo(k) _ _g(r.k)
0E(k) (k) '
where 1(k) isthe relaxation time for an electron to scatter out of momentum state k, which is defined
by

v(k) 0, g(r k) - e& (k) (12.6)

T k) = g Ruc - (12.7)

In general, neglecting the scattering-in term is not atrivial approximation and has to be justified (e.g.,
ref.30).
For a bulk homogeneous system it is straightforward within the relaxation time approximation to

derive the expression for the conductivity tensor oV which is defined by
"= ZU“VSV : (12.8)

where the indices ¢ and v denote the Cartesian components. In this case O, g(r,k) =0 and it follows
from Eq. (12.6) that

ofy (k) ,
0E(k)
Taking the zero-temperature limit, i.e. of °(k)/E, (k) = —3[E, (k) - E ], and substituting Eq.(12.9)

into Eq.(12.5), we obtain the well-known expression for the conductivity per single spin channel
within the rel axation time approximation:®

(12.9)

_32 u v -
=5 ZV )V (K)T(K)S[E(K) - E.]. (12.10)

In the case of films and multilayers which are assumed to be homogeneous in the xy plane of the
layers but inhomogeneous in the z direction perpendicular to the planes (due to the interfaces and
boundaries), the distribution function g(z,v) is dependent on z, but independent of x andy. In this case
the solution of the Boltzmann equation (12.6) takes the form

gt(z,k):er(k)alj/(k)ao((k))g, A* (k) exp (k)TVZ(k”% (12.11)

Here signs + refer to whether the z-component of the electron velocity is positive or negative. The
coefficients A* are determined from matching the boundary conditions at the interfaces and outer
boundaries in terms of reflection and transmission probabilities and will be considered below. The
current density can be obtained from Eq. (12.5).

We note that the solution of the Boltzmann equation takes the form of equation (12.11) only for
the CIP geometry which we consider in this section. In this case the current and applied field can be
assumed to be uniform within the plane of the multilayer. For the CPP geometry the electric field is
position- and spin-dependent because magnetic multilayers are inhomogeneous in the direction of the
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electric current?® and, therefore, equation (12.11) does not hold. This point will be further discussed in
the next section.

Up to this point we have not specified what is the band structure of the system under
consideration. The above derivations are valid for the multiband electronic structure (assuming that
the band index is included in k) and can be applied for the calculations of conductivity and GMR
within the semiclassical approximation in this general case. This will be discussed in section 16.
Below we consider a free-electron model.

Within a free-electron model the band structure of a magnetic multilayer or a thin film is
described using a single parabolic band which is independent of the spin direction. The complicated
electronic structure of the transition metas is therefore significantly simplified by neglecting
contribution from the d bands and their strong hybridization with the sp bands. Within the free-
electron approximation the expression for the conductivity per spin, which can be found from
Eq.(12.5) by integrating over the film thickness, is simplified (e.g., ref.104):

o= 1NE“ 24 1[du(l u)uDL\ (u)%—e i ) % % (1212)

Here we have assumed for simplicity that the relaxation time is independent of k and introduced the
layer-dependent mean free paths Ai=Tive. In Eq. (12.12) u refers to the cosine of the momentum
perpendicular to the interfaces, d isthe total thickness of the multilayer, d; and p; are the thickness and
the resistivity of the metal layer i, and, as before, we omit spin indices. The first term in this
expression gives the conductivity if the various layers were carrying the electric current in parallel.
The second term is responsible for finite size effects. The coefficients A* can be found using the
boundary conditions.

Fuchs and Sondheimer applied the semiclassical free-electron model to the conductivity of a
homogeneous nonmagnetic thin film.#*# The boundary conditions for the film were determined using
the following arguments. If the film is placed at 0<z<d, the distribution function at z=0 must have no
electrons with v;>0 other than those specularly reflected from the surface because there are no
electrons outside the film. Therefore, defining a fraction p of the electrons which are specularly
reflected, the boundary condition at z=0is

9°(0,v,)=pg (Ov,). (12.13)

Similarly at the opposite side of the film, i.e. at z=d, the electrons with v,<0 could only be those which
are specularly reflected from the boundary:

g (d,v,)=pg"(d,v,). (12.14)

In the case p=1, which corresponds to perfect reflection from the boundaries, the conductivity of the
film is identical to the conductivity of an infinite homogeneous metal.’® If p<1, a fraction of
electrons, (1-p), is scattered diffusively. The case of p=0 corresponds to perfectly diffuse scattering,
when al the reflected electrons lose memory of their velocity. In the presence of diffuse scattering the
conductivity of a thin film decreases with the film thickness. The effect is significant if the film
thickness is reduced down to become comparable to the mean free path, i.e. d~A=vgT. For thicker
films the current density is close to the bulk value in the center of the film, but lowered in the vicinity
of the boundaries at distances of the order of A.

In the case of layered structures, apart from the probability p for specular reflection at the outer
boundaries, additional boundary conditions at the interfaces are required.’® These boundary
conditions can be imposed by assuming that the electrons are coherently transmitted with probability
T, coherently reflected with probability R, or diffusely scattered with probability D at the interface.
The electrons which are diffusely scattered are assumed to be simply lost so that the transmission and

36

reflection probabilities are related by the expression D=1-T-R. Thus, at the interface between layersi
and i+1,

9% =T9 + Ry, (12.15)
9 =Tg.. +Ry;. (12.16)

Carcia and Suna’® used these boundary conditions to treat the conductance in nonmagnetic
multilayers, assuming for simplicity that the electrons can be transmitted or scattered, but cannot be
specularly reflected, i.e. R was set equal to zero.

Camley and Barnas' generalized this semiclassical free-electron model to trest GMR in
magnetic multilayers and spin valves by assuming that the electric current is spin-dependent and is
carried in parallel by the up-spin and down-spin electrons. Within their model scattering in the bulk
ferromagnetic layers is treated by introducing spin-dependent relaxation times (or equivalently spin-
dependent mean free paths which enter the expression for the conductivity (12.12)). Scattering at the
interfaces is taken into account by assuming spin-dependent transmission coefficients in the boundary
conditions (12.15) and (12.16), i.e. T' #T*, specular reflection at the interfaces being neglected.
Using this semiclassical free-electron model the conductivity and GMR in magnetic multilayers and
spin valves can, therefore, be analysed in terms of a number of phenomenological parameters such as
spin-dependent mean free paths, spin-dependent transmission probabilities at the interfaces and
specular reflection coefficients at the outer boundaries. This model has been extensively used for
calculations of GMR and interpreting experimental data.>">°41711% Below, we discuss the main
predictions for GMR, which follow from this semiclassical free-electron model.

The magnitude of GMR decreases monotonically with increasing ratio of the thickness of the
nonmagnetic spacer layer dywv to the mean free path in the spacer layer A, similar to that displayed
in Figs.11,12. There are two contributions to the decrease of the GMR ratio AR/R=Ap/ pe=A0l 0ap: the
first one contributes to the drop of Ao=0p-0pp, Whereas the second one results in the increase of gpp.
The drop of Ao reflects the reduction in the number of electrons, which can reach an opposite
FM/NM interface before being scattered within the spacer layer. Asymptotically, the decrease of Acis
exponential with a characteristic decay length equal to the mean free path in the spacer layer, i.e.
exp(-dnm/Anm). However, this asymptotic regime is reached only for dyw>>Anm, because according to
formula (12.12) the conductance may be expressed as an integral over an exponential with respect to
various incidence angles of the electrons. This asymptotic regime does characterize those multilayers
in which Cu (or other noble metals) is used as the spacer layer. Thisis due to the relatively large mean
free path in Cu, typically of the order of 20nm at room temperature as is estimated from the Drude
formula. The regime which is relevant to these experiments is characterized by a more complicated
variation of AR/R than a smple exp(-dnw/Anv). However, as was demonstrated in section 5, a
reasonable description can be obtained by introducing an effective scattering length Iyv according to
Eqg. (3.1). Another contribution to the decrease of GMR as a function of dyw comes from the shunting
current within the spacer layer, which leads to an increase of gap approximately in a linear fashion
with dnw. If bulk scattering is negligible compared to the scattering at the interfaces, then the change
in Ao with dyw will be small. In this case the shunting current becomes the dominant contribution and
Aol Opp drops as Ldym.

According to the semiclassical free-electron model the variation of GMR as a function of the
thickness of the magnetic spacer layer is different depending on whether the bulk or interface spin-
dependent scattering is dominant. In the case of bulk scattering the GMR ratio exhibits a maximum at
a certain thickness similar to that in Fig.13. This can be seen from the calculated results presented by
the solid lines in Fig.20, which display the magnitude of GMR as a function of the ferromagnetic
layer thickness dey for multilayers with various number of FM/NM bilayers.’® In this calculation
bulk spin-dependent scattering is introduced through the spin-dependent mean free paths in the

ferromagnetic layers, namely Ap, =12nm and A, =0.6nm, and diffuse scattering is assumed at the
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outer boundaries. As is evident from this figure, the position of the GMR maximum shifts towards
lower FM layer thicknesses with increasing the number of bilayers N. The presence of the GMR
maximum and its shift with N is a direct consequence of the bulk spin-dependent scattering and the
diffuse scattering at the outer boundaries. In the case of a smal number of bilayers, e.g., for the
trilayer structure with N=1, the position of the GMR maximum is related to the long mean free path in
the FM layer, so that d, ~ AL, . At this FM layer thickness the up-spin electrons are able to
contribute to the conduction before being diffusely scattered at the outer boundaries. On the other
hand, in the case of a large number of the FM/NM bilayers, the position of the GMR maximum is
determined by the shorter of the two mean free paths, so that d,, ~ Ay, . Thisis because for large N
the scattering at the outer boundaries becomes unimportant so that the maximum value of GMR will
be obtained when the ferromagnetic layer thickness is sufficient to provide scattering of the down-
spin electrons.

80,

ARIR (%)
8

FM layer thickness (nm)

Fig.20  Magnetoresistance versus ferromagnetic layer thickness in (FM/NM)yFM multilayers for
bulk (the solid lines) and interface (the dashed line) scattering as calculated using the
semiclassical free-electron model. Ayy=20nm, dyw=20nm, and diffuse outer boundary
scattering are assumed in the calculation. The other parameters are set as follows: N is

varied, Apy =12nm, Apg, =0.6nm, T'=T'=1 for bulk spin-dependent scattering and
N=0o, Ay =Apy =0.6nm, T'=1, T'=0.1 for interface spin-dependent scattering. After
Dieny. 1041

In the case of interface spin-dependent scattering GMR decreases monotonically as a function of
the FM layer thickness. This can be seen from the dashed line in Fig.20, which is calculated for the
multilayer with an infinite number of repetitions N by introducing spin-dependent transmission
coefficients at the FM/NM interfaces, i.e. T'=1 and T'=0.1."" The decrease of GMR reflects the
fact that the bulk scattering in the ferromagnetic layers is assumed to be spin-independent and,
therefore, increasing the FM layer thickness enhances the relative contribution of this type of
scattering. When dry becomes much longer that the mean free path in the FM layer, Apm, GMR is
inversely proportional to dew, i.e.0 A, /d,, .*® This dependence can be explained by the argument
that only those electrons which leave the FM region of thickness Agy adjacent to the interface have a
sufficiently high probability not to be scattered within this FM layer and, therefore, reach the opposite
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interface. The rest of the FM layer is inactive and serves only as a shunt, which reduces GMR
inversely proportional to dem.

The semiclassicd model predicts that with increasing number of FM/NM bilayers within a
multilayer the value of GMR increases until it reaches saturation, which is similar to that found
experimentally and presented in Fig.17a. This tendency can also be seen in Fig.20, according to which
at afixed value of the FM layer thickness the increment of the GMR growth decreases for larger N.
This behaviour of GMR versus N is due to the diffuse scattering at the outer boundaries of the
multilayer. As has already been explained in section 9, if the longest mean free path is larger than the
total thickness of the multilayer, then the diffuse outer-boundary scattering reduces the conductivity
of the “good” spin channel and hence effects GMR negatively. The magnetoresistance ratio becomes
independent of the number of bilayers when the total thickness of the multilayer is much larger than
the longest mean free path.
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Fig.2l  The effect of specular scattering at the top outer boundary of a FM/NM/FM trilayer as
calculated from the semiclassical free-electron model. The magnitude of GMR is plotted as
afunction of the top FM layer thickness for various probabilities of specular reflection p at
the top outer boundary. Bulk spin dependent scattering, T'=T* =1 and Agy /Agy =10,

and specular reflection at the bottom outer boundary, ppotom=1, are assumed in the
calculation. The other parameters of the model are set as follows: drw-pottom =2NM,
daw=2nm, pev=15pQcm, and pay=6pQcm. After Bailey.'™

Increasing the specular scattering at the outer boundaries strongly enhances GMR in FM/NM/FM
trilayers, provided that the FM layers are not too thick. This effect is evident from Fig.21, which
shows the calculated magnetoresistance as a function of the top FM layer thickness in the spin valve
with varied probability of specular scattering p at the top outer boundary of the trilayer.** Bulk spin-
dependent scattering in the ferromagnets and specular reflection at the bottom outer boundary
simulating a NiO pinning layer are assumed in this calculation. The enhancement of GMR with the
increasing amount of specularity p is due to the stronger specular scattering from the top surface,
which unlike diffuse scattering reflects electrons back allowing them to cross the spin valve many
times, thereby increasing spin-filtering effects. Note that the optimum thickness of the FM layer at
which the maximum GMR is observed also depends on p and decreases with top surface specularity
p, which is similar to what was found for the multilayers with an increasing number of FM/NM
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bilayers (Fig.20). Thisis not surprising because, as has been recognized by Barnas et al.,” amultilayer
with an infinite number of periods can be simulated by considering a bilayer with specular scattering
at the outer boundaries in which the FM layer thickness is taken as half the actual one. At larger FM
layer thicknesses the GMR ratio for the specular top surface becomes lower than the GMR ratio for
the diffuse-scattering top surface. As is seen from the insert in Fig.21, the crossover occurs at drm
=10nm. This is a consequence of the current shunting which becomes dominant over GMR
enhancement. Indeed, when the FM layer thickness is larger than the longest mean free path within
this layer the specular-reflected electrons are not able to reach the spacer layer and instead contribute
to the shunting current.

The semiclassical free-electron model predicts a linear variation in the conductance as a function
of cos6, where 8 is the angle between the magnetizations of the two ferromagnetic layers in a spin
valve. When the magnetic moments of the FM layers are not aigned, the momentum transfer between
the up- and down-spin conduction channels is determined by the transmission coefficients which are
givenby T, =T =cos’(@/2) and T, =T, =sin®(0/2)."" Using these expressions and assuming
diffuse scattering at the outer boundaries and no specular reflection at the interfaces, it can be shown
that the conductance of the trilayer, I', variesin alinear fashion with cos8 %’ i.e.

r(e) = rAp +(rp - rAp)(l—COSQ)/Z. (1217)

This result is to first order in the GMR ratio equivalent to expression (11.3), according to which the
resistance varies linearly with cos6. However, the difference between these two descriptions can
become sizeable for those systems with relatively large values of GMR (see also section 11).

We see that the semiclassical free-electron model predicts correctly a number of important
features of GMR which are observed experimentaly (section Ill). For example, it qualitatively
explains the variation of GMR versus ferromagnetic and nonmagnetic layer thickness, the effect of
specular/diffuse scattering at the outer boundaries, the enhancement of GMR with the increasing
number of repetitions within a multilayer, and the angular variation of the conductance in spin valves.
The great advantage of this model is the ease of application to a particular layered system, which
alows understanding qudlitative trends in the transport properties. However, as was mentioned above
the semiclassical free-electron model ignores the redlistic band structure of the multilayer and,
therefore, can not be applied for a quantitative description of GMR. Although much experimental data
can be fitted well using the semiclassical free-electron model, the parameters, which are extracted
from the fitting, should be treated with caution. For example, Camley and Barnas'”’ have found that
in order to account for the increase in GMR from room temperature to liquid helium temperature they
had to use a mean free path of 600nm at 4.2K, which is unrealistically long even for the MBE-grown
thin films.

A qudlitative failure of the semiclassical free-electron model to describe consistently in-situ
conductance experiments in NiO/Co/Cu/Co spin valves was demonstrated recently by Bailey et
al.™213 They found striking features in the experimental thickness-dependent conductance which is
displayed in Fig.22a. As is evident from the figure, addition of about 1 monolayer of Co to a
NiO/Co/Cu surface causes the net film conductance to decrease. The reverse case of Cu on NiO/Co
shows a strong positive curvature of the conductance, indicating a reduction of the conductivity in Cu
near the interface with Co. Detailed microstructural characterization using in-situ Auger electron
spectroscopy and ex-situ X-ray diffraction measurements indicated that the defect concentration does
not vary noticeably as a function of thickness. These microstructural measurements suggest that the
bulk scattering parameters p and A should be considered to be constant within each layer, and that the
surface scattering parameter p does not change between the layers. Under these constraints, it appears
to be impossible to fit even qualitatively the highly asymmetric scattering behavior measured during
the formation of Co/Cu versus Cu/Co interfaces. As can be seen from Fig.22b, depending on the
choice of theinterfacia transmissivity parameter T the thickness-dependent conductance either do not
display any conductance step at the interfaces or display a step at both Co/Cu and Cu/Co interfaces,
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neither being observed experimentally. As we will see in section 17, calculations incorporating a
realistic band structure resolve the observed inconsistency between the free-electron model and the
experiments.
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Fig.22  Experimental (a) and calculated (b) thickness-dependent conductance of NiO/Co(2nm)/
Cu(tc,)/Co(4nm) spin valves. (8): Conductance is measured in-situ during the deposition of
the spin valves with various thickness of the Cu layers: dc,=5.8nm (A), 1.1nm (B), 1.6nm
(C), 2.3nm (D). The position of the interface with the bottom Co layer is the same for al the
samples and is marked by the vertical line. Note the strong deviations from linearity in the
vicinity of the interfaces: a drop in film conductance for Co on Cu and positive curvature
for Cu on Co. After Bailey et al.**? (b): Calculations are performed using a free-electron
semiclassical model using parameters which provide a best fit of the data in Fig.21la
Interface scattering (T<1) must be introduced to produce the conductance drop observed
during deposition of Co on Cu, producing a complementary drop for Cu on Co which is not
observed. After Bailey et al.™®

Some of the band structure effects can be captured within an extended free-electron model, which
has been proposed by Hood and Falicov.** They introduced layer- and spin-dependent effective
masses and the relevant band fillings. They then studied the effect of specular scattering from the
resulting potential steps at the interfaces. Unfortunately, the number of free parameters in such a
phenomenological model is so large that the analysis of the experimental data in terms of this model
becomes uncontrolled.

13. Quantum-mechanical theory

In addition to the lack of an accurate description of the electronic structure, the semiclassical free-
electron model suffers from the inability to describe quantum effects, which become important at
small film thicknesses. The confinement of electrons in a thin film leads to a discretization of the
energy levels. The corresponding quantum effects become observable when the typical spacing oE
between the energy levels near the Fermi energy becomes larger than the level broadening 7/t
arising from various scattering mechanisms.**® Since JE ~ #iv, /d , where d is the film thickness, the
condition for observing quantum size effectsisd < A, where A is the mean free path. The failure of the
semiclassical theory becomes apparent if one considers the conductivity of a thin film with
diffusively-reflecting surfaces.™™® In the limit when the mean free path becomes much longer than the
film thickness the conductivity tends to infinity, implying that in the absence of bulk scattering the
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scattering by the rough surfaces induces no dissipation of electrical current. This unphysical resultisa
direct consequence of ignoring quantum size effects within the semiclassical theory.*

In order to resolve this deficiency of the semiclassical model a quantum-mechanical approach to
electronic transport is required. There are severa different quantum-mechanical formulations of
transport theory which include those of Kubo,™® Landauer™® and Keldysh.'® The Kubo (linear
response) formalism considers the electronic transport in a disordered metallic system as a linear
response to an applied electric field.”® The Landauer formalism describes the conductance from the
point of view of the transmission of electrons through a conductor and is applicable to mesoscopic
transport.**> The Keldysh (non-equilibrium Green's function) formalism is conceptually more
complicated than the Kubo and Landauer formalisms, but is more general because it provides a
description of the quantum transport in the presence of dissipative interactions.?*'?® All these
theories can be used for calculations of GMR within a quantum-mechanical approach. In the present
review we outline basic principles of the Kubo theory, which is the most widely used for the treatment
of GMR (for adetailed formulation of the linear response theory see, e.g., ref.121).

The starting point of the Kubo formalism is the density matrix. The density matrix is the
quantum-mechanical operator, which describes the statistical properties of a gquantum-mechanical
system. It is the analogue of the distribution function within the semiclassical theory, which we have
discussed in section 12. The density matrix o satisfies the quantum-mechanical equation of motion

do,
dt

where H; is the Hamiltonian of the system and [,] denotes a commutator. This equation describes the
evolution of the system affected by a time-dependent perturbation U(t) due to the applied electric
field. We assume that the electric field takes the form Eexp(et), so that it is uniform in space, is
applied at t =—o and grows adiabatically to itsvalue & at t =0. The latter is taken into account by an
infinitesmal positive ¢, so that the limit - 0 should be taken in the final result. The single-electron
Hamiltonian of the system can then be represented by

H,=H+U(t) =H +eS1e", (13.2)

in—"=[H,p], (13.1)

where H is the time-independent Hamiltonian of the unperturbed system.

Equation (13.1) is the guantum-mechanical analogue of the semiclassica equation (12.1). It
describes the time evolution of the system. Initiadly, i.e. a t =-o, the system is at equilibrium and is
characterized by the unperturbed density matrix p, according to the Fermi-Dirac distribution
o =[5V T +1]™. Due to the applied electric field (13.2) the system adiabatically follows the
perturbation. Within the Kubo formalism we are looking for the solution of the equation (13.1) to first
order with respect to the applied electric field. We can, therefore, represent the density matrix as
P=p+op(t), where dp(t) is a smal time-dependent deviation from the equilibrium Fermi-Dirac
distribution p due to the applied electric field. The linearized equation for the density matrix (13.1)
then takes the form

ddp(t)
dt

Now we rewrite this operator equation in terms of the matrix elements by introducing a basis of

eigenstates |a) of the unperturbed Hamiltonian H. The equilibrium density matrix p has the same

eigenstates as H so that

-5 1
paﬂ ~ Yap eEE/KT g

in

=[H.3p(®)] +[U (1), o]. (13.3)

=5, f(E,), (13.4)
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where f(E,)=[e"~5"" +1] is the Fermi-Dirac distribution function and E, is an eigenvalue of
H. The operator r which enter the term [U(t),0] through equation (13.2) is non-diagonal in the |a)
representation. It is convenient to represent the matrix elements of r in terms of the matrix elements
of the velocity operator v using the relation iav =[r,H], where we can use H instead of H; by
neglecting high order terms. Taking thisinto account we find:
f(E,)- f(Eﬂ)ea.

V@, ol =ines v, E -E,

(135)

The time dependence of d0(t) is determined by the perturbation (13.5), so that dp(t)=Jpexp(et). Using
equations (13.4-13.6) we find the solution for the density matrix at t=0

5o = 1880y (€)= 1(Ey)
puﬁ_Eﬁ—Ea+i£ E.-E,

(13.6)

This solution can now be used for calculating the electrical current. For a spatially homogeneous
system the current-density operator is defined by j=-ev/Q, where Q is the total volume of the system.
We need to calculate the expectation value of j which is determined by <]> =Tr(jop), where we have
used the fact that Tr(jp) =0, as in equilibrium there is no net current in the system. Using the
definition of the conductivity (12.8) and taking the limit £-.0 we obtain

o = e’

%VZ‘BVZM(EH —E)-F(E)I, (137)

i
X+ig
is required by the &-function, [ (E,) - f(Ep)I/(E, —E;) - f'(E,). Using the identity

where we have taken into account that Reling =md(x) and used the fact that as E, - Eg, which

3(E, -E,) = }dEc‘S(E -E,)3(E-E,) (13.8)

and taking the zero-temperature limit at which [-f'(E)] =d(E-E;), formula (13.7) for the
conductivity can be neatly represented by

wo— e’m u v
0" == STV S(E, ~H)V'S(E, ~H)). (13.9)

The above formula for the conductivity would generally depend on the particular type of the
disorder responsible for the scattering. In order to obtain a result that is independent of the particular
disorder configuration but depends only on average characteristics (e.g., defect density or impurity
concentration), one has to perform a configurational average of this expression. In this form the above
expression is known as the Kubo-Greenwood formula.*?*

In many cases it is convenient to carry out the configurational averaging using techniques which
have been developed for Green’s functions (e.g., refs.121,125,126). Therefore it is useful to rewrite
the Kubo-Greenwood formulain the following form

o :@<Tr{v“ IMG(Ec V" IMG(E¢)}). (13.10)
Qmr

Here the angular brackets stand for the configurational average and we have introduced the Green's
function, which is defined by



. 1

G(E) LIP;IE_H T (13.12)
and have taken into account that d(E-H) = -ImG(E)/ .

The general techniques for configurational averaging in disordered homogeneous systems have
been described in detail elsewhere, e.g., in refs.121,125,126. Here we briefly summarize the main
results. We assume that the total Hamiltonian of the system can be represented by H=H%+V, where H°
describes the undisturbed periodic system and V is scattering potential due to the defects or
impurities. By configurational averaging we replace this system which is characterized by the random
non-periodic potential by an effective medium which possess trandlationa invariance. The
configurational averaging leads to the renormalization of the Green’s function so that

1
(G(B) =z 5E" (13.12)
where X is the self energy. The above equation can be considered as the definition of X, which is an
energy-dependent non-Hermitian operator. Its real part shifts the energy levels of the undisturbed
system, whereas the imaginary part characterizes the broadening of the levels due to the finite
scattering lifetime. ImZ(Eg) determines, therefore, the relaxation time 1, which has been introduced
within the semiclassical theory (section 12).

It follows from equation (13.10) that the conductivity tensor requires an average over the product
of two Green's functions, i.e. olllGGL In genera, performing this averaging explicitly is a
complicated problem. This is the reason why very often the conductivity is approximated by the
product of the average of the Green's functions, i.e. ol GIGL By making this approximation one
ignores the contribution from the vertex corrections in the linear response formalism.** This
approximation is eguivalent to neglecting the scattering-in term in the semiclassical theory, which
alows the introduction of the relaxation time approximation (section 12). Similar to the relaxation
time approximation, the neglect of the vertex corrections in quantum-mechanical linear-response
theory isanon-trivial approximation and has to be justified (see ref.121 for a discussion).

We note that the above derivation of the formula for conductivity is valid for a homogeneous
system. In this case the current and applied field can be assumed to be uniform so that one can define
the conductivity according to equation (12.8). This is the conductivity, which is given by the Kubo-
Greenwood formula (13.10). In a genera case of an inhomogeneous system the current density is
determined by the non-local conductivity according to

Ay =fary o (r e (r). (13.13)

The electric field &(r) in this equation is the local electrostatic field, which arises from the application
of the potential difference across the sample. As was explained by Levy,? this is an internal field,
which is not the same as the field applied externally. For inhomogeneous magnetic systems the local
internal field is position- and spin-dependent. If the rate at which the electrons are scattered varies
from one region to another, then electrical conduction will lead to a spatial redistribution of charge.
This charge redistribution in inhomogeneous media results in a nonuniform internal electric field. In
magnetic systems electron conduction is spin-dependent. Spin-polarized electric currents in
inhomogeneous media lead to a spatial redistribution of spin aswell as charge.®” This phenomenon is
known as spin accumulation or current-driven magnetization. The internal electric field in equation
(13.13) may, therefore, be different for different spins. In magnetic multilayers the effect of a
position- and spin-dependent internal field is very important for perpendicular transport because these
systems are inhomogeneous in the direction of electric current.?’ For parallel transport, however, the
internal electric field is a constant, because these layered systems are homogeneous in the plane of the
layers. The Kubo-Greenwood formula (13.10) can, therefore, be used for the treatment of CIP GMR.
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The quantum-mechanical model for GMR was first introduced by Levy et al.®® They used the
Kubo formalism to calculate the conductivity of free electrons scattered by a spin-dependent potential

V() =3 (v, + jms)(r -r,), (13.14)

which is produced by random-point scatterers. In the above formular, is a random position of the
scatterer, m is a unit vector in the direction of magnetization, o is the Pauli matrix, v, and j,
characterize the strength of the spin-independent and spin-dependent contribution to the scattering
potential respectively, which may be different for different layers and interfaces. Performing the
configurational averaging in momentum space, Levy et al. derived a simple formula for the local
conductivity, which can be expressed in terms of the local spin-dependent scattering rate A(2) as

ne?

mA(z) |

o(2) = (13.15)
where z is a coordinate perpendicular to the layers. The local scattering rate A(2) is determined by the
appropriate average of the z-dependent scattering rates within the different layers. The total CIP
conductivity of the multilayer can be found by integrating over the multilayer thicknessL, i.e.

o= %{a(z)dz. (13.16)

In the limit of the mean free path being long compared to the layer thickness, .>d, this model
reduces to the series-resistor model, which was introduced in section 3. In particular, in the case of
interface scattering the result for GMR is given by formula (3.5), in which the asymmetry parameter o
is determined by the interfacial scattering parameters in equation (13.14), namely
jiu IV = (W =1)/(\/a +1). In the case of bulk scattering the value of GMR can be found from
formula (3.6), in which « is determined by bulk scattering parameters in equation (13.14), namely
Toutc / Vour = o -1)/(Ja +1).

The same model of free electrons scattered by spin-dependent potential (13.14) was used by
Camblong et al.****® to describe GMR within a real-space approach. According to Camblong™* the
real-space approach works better because it avoids the local approximation for the conductivity which
was used in the momentum space approach of ref.128. Solving equation (13.12) within a weak
scattering approximation and in the dilute limit of impurity concentration, Camblong et al. derived
expressions for the non-local conductivity for both the CIP and CPP geometries. They found that the
semiclassical approach for multilayers and the real-space quantum theory produce the same
magnetotransport properties, provided the effect of quantum interference and quantum-size effects are
neglected. A similar conclusion was arrived at by Vedyayev et al.*** who used the real-space
guantum-mechanical approach for the conductivity of free electrons affected by bulk spin-dependent
scattering in spin valves*?

The quantum models of Levy et al.’® and Camblong and Levy'?**® have been compared with
the “exact” solution for the conductivity by Zhang and Butler.**®* Similar to refs.128-130 they used the
model of free electrons with random point scatterers and calculated the position-dependent
conductivity without the vertex corrections. However, instead of deriving the expression for the self-
energy from a Hamiltonian by configurational averaging, they assumed that the imaginary part of the
self-energy is a phenomenological parameter and compared approximations used by the previous
authors within the quantum and semiclassical models. Zhang and Butler found that the Camblong and
Levy's approach is identicd to the Fuchs-Sondheimer theory within the relaxation time
approximation and specular boundary conditions at the interfaces. As can be seen from Fig.23a, this
approach predicts the total CIP conductivity of a multilayer in good agreement with the exact
solution. This fact demonstrates that in the absence of potential discontinuities at the interfaces
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guantum effects, such as oscillations in the conductivity, are effectively averaged out and the
semiclassical solution provides a good approximation for GMR within the free-electron model. It is
also clear from Fig.23a that although the model of Levy et al.*?® predicts the correct thin and thick
limits, it does not accurately reproduce the exact results for intermediate film thicknesses. Fig.23b
compares the calculated results for GMR within the different models. As is seen from the figure, the
model of Levy et al. strongly overestimates GMR, whereas the Camblong and Levy’s or semiclassical
results are much closer to the “exact” curve.
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Total thickness (a.u.) FM layer thickness (a.u.)

Fig.23  Comparison of “exact” calculations (solid lines) with different free-electron models for GMR,
the model of Levy et al.'®® (dotted lines) and the model of Camblong and Levy'**® (dashed
lines). Note that Camblong and Levy's theory is identical to the Fuchs-Sondheimer theory
with p=1. (a): The calculated conductivity (in units 10™°s™ =1113Qcm™) as a function of the
total thickness of a period for a nonmagnetic multilayer with a period of two layers and with
mean free pathsin each layer of 2;=36a.u. and 2,=360a.u. (1a.u.=0.0529nm). The thickness of
the first layer is twice that of the second. The horizontal lines show the limits of thin and thick
films. (b): The calculated GMR of a magnetic multilayer as a function of the ferromagnetic
layer thickness. Thin interfacial layers of 4au. thickness and mean free paths of A'=50a.u.,
A'=10a.u. are introduced to model strong spin-dependent scattering at the interfaces. Other
parameters are as follows: dyw=50au., 4‘yw=4‘\w=427a.u., A'my=100au. and A'ry=20a.u.
After Zhang and Butler.'*

The above quantum models for GMR assume that the origin of GMR lies in spin-dependent
scattering potentials at the interfaces or in the bulk metas. By using the free-electron approximation
these models ignore the variation of the intrinsic spin-dependent electronic potential of the layered
structures. An extension of the free-electron theory for magnetic multilayers to include the intrinsic
potential within the Kronig-Penney model has been performed by Zhang and Levy™ in the
momentum-space approach and Bulka and Barnas™ in the real-space approach. They found that the
spin-dependent steps at the interfaces could enhance or reduce GMR depending on the parameters
characterizing the potential. It was also shown that the GMR phenomenon could occur in structures
with no spin asymmetry in the relaxation times, but with a spin-dependent electronic structure (which
originates in the above models from introducing a spin-dependent potentia within the multilayer).
However, quantitative predictions are difficult because of the unknown parameters characterizing the
spin-dependent potential. Only a full band structure calculation can predict why potentia steps at the
interfaces may be important.

The effect of the intrinsic step-like potentidl on GMR in spin-valve structures was also
considered by Vedyayev et al."*® and Barnas and Bruynseraede.™®” They found that their results are
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strongly influenced by quantum-size effects at small layer thicknesses and predicted oscillations in
GMR as afunction of the layer thicknesses. Unfortunately, these quantum-size effectsin GMR which
make the guantum free-electron models conceptually different from the semiclassical free-electron
models have not yet been observed. Apart from the quantum-size effects, the variation of CIP GMR
as a function of magnetic and non-magnetic layer thickness within the quantum free-electron models
qualitatively reproduces semiclassical results.?** Although quantitatively the predictions of the
semiclassical and quantum models might differ, the experimental data can be fitted well using both
approaches.®! However, neglecting the realistic band structure, which is the grossest approximation
inherent in the free-electron models, makes quantitative comparison of these models with experiments
unreliable. Including an accurate spin-polarized band structure to the models for GMR will be
considered in section V.

14. Tight-binding models

A single-band tight-binding model is another simple way to describe the electronic band structure
of ametal. Unlike the free-electron theory, the tight-binding theory describes the electronic structure
in terms of localized atomic orbital's, which overlap due to the bonding between neighboring atoms.**®®
The propagating (Bloch) states, which are responsible for the electronic transport in metals, can be
built up from the atomic orbitals by solving the respective Schrodinger equation. The tight-binding
approach is especialy suited to numerical calculations of the conductance because it discretizes the
spatial continuum in terms of atomic cites. A single-band approximation to the tight-binding model is,
of course, a strong simplification to the band structure. However, as we will see in section 17, the
tight-binding model can be generalized to a multiband description of the electronic structure which
makes it a very powerful tool for modeling GMR.

A single-band tight-binding Hamiltonian takes the form

H:Z‘i>Ei<i‘+Z“>hn<j ; (14.1)

where E; are \l) are the on-site atomic energy and the atomic orbital at site i respectively. The tight-

binding hopping matrix elements hy are usually assumed to be non-zero only between nearest-

neighbor lattice sites. This simple model is quite flexible and alows elaboration. In particular, the
Stoner exchange splitting of the spin bands can be included in this model by taking different on-site
atomic energies for the up- and down-spin electrons. Disorder can be introduced by assuming
randomness in the on-site energies or in the hopping matrix elements. Impurities can be included by
putting atoms with their on-site energies, which are different from those of the host atoms. Using this
tight-binding model for studying GMR helps to elucidate the microscopic origin of spin-dependent
scattering, an important issue which has not been addressed within the phenomenological free-
electron models described in sections 12 and 13.

As was discussed in the previous section, in order to calculate the transport properties of a
disordered metal an appropriate configurational average has to be performed. This configurational
averaging can be carried out analytically using the Green's function’s methods (e.g., ref.125) within
certain approximations, e.g., low density of impurities/defects, weak scattering potentias, and
neglecting vertex corrections. The drawback of this approach is that frequently the validity of the
approximate solution is difficult to monitor. An aternative approach is to perform the averaging
numerically by generating a number of random configurations of disorder/impurities within a
sufficiently large cell. An efficient method for calculating conductance using this approach has been
developed in the field of mesoscopic physics.™®® This method utilizes the discrete nature of the tight-
binding model and is based on the Kubo formula and the recursive Green's function technique. The
disadvantage of the recursive method is that it is computationally demanding. One is limited to a
relatively small cell size, which may lead to artifacts due to the effect of boundary conditions.
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Nevertheless, this method has become a powerful tool for studying GMR, especially within the CPP
geometry (see section VI). Below we outline the basic ideas of this approach.

The geometry of the system, which is normally considered for calculating the conductance
within the recursive technique, is shown schematically in Fig.24. The sample under consideration,
e.g., amagnetic multilayer, is placed between two semiinfinite leads. The sample can be, in general,
disordered but the leads are assumed to be perfect. We note that although the system, which is shown
in Fig.24, represents an infinite wire, periodic boundary conditions can, if required, be imposed in the
transverse direction to built an infinite multilayer. It is assumed that at infinity the leads are connected
to reservoirs, which are at thermodynamic equilibrium. The electric current in the system is driven by
a small electrochemical potential difference between the reservoirs. Such a formulation of the
problem is typical for the Landauer approach to the electronic transport in mesoscopic systems.*?? It
has been proved that the Landauer formalism can be derived directly from the Kubo formalism,*** the
latter being an efficient method for calculating the conductance within the recursive technique.**

(& CIPgeometry (b) CPP geometry
Xl
Z
y
| — 1
Leads Current Sample (multilayer)

Fig.24  Geometry for the CIP (a) and CPP (b) GMR calculation within the tight-binding recursion
method. A sample (a magnetic multilayer) is placed between semiinfinite perfect leads. The
electric current flows in the z direction.

Within the above formulation the conductance rather than the conductivity (13.10) is the subject
of interest. The Kubo formula (13.10) for the zero-temperature conductance I' per spin can be
rewritten for the case of asimple cubic lattice with lattice constant a as

r= 2ﬂTr{vlmG(E WIMG(E, )} . (14.2)

Here v is the projection of the velocity operator to the direction of current (the z direction in Fig.24)
and G(Eg) isthe Green's function of the total coupled system, which includes the right and the |eft
electrodes and the sample, at the Fermi energy Er. The Kubo formula (14.2) can be evaluated by
“cutting” the system in the transverse direction (i.e. in the xy plane in Fig.24) and calculating the
matrix elements of the Green's function and the velocity operator between the atomic planes | and
|+1. Due to the current conservation condition the result for the conductance is independent of | and
the latter can be chosen arbitrarily. The velocity operator can be represented as

h Zhn ||+1{

> is the atomic orbital of atom i in plane | and hy i+, are hopping matrix elements between

planes| and I+1. Normally it is convenient to take | being the last atomic plane of the sample L so that
L+1 isthefirst layer of the right lead. The matrix elements of the Green’s function of the total system

j|+1 I

L(j. 0+, (14.3)

where |i,

at planes L, L+1 and between them can be evaluated using the recursion technique as described
below.

First, one finds the matrix elements of the surface Green's function for the detached semi-infinite
leads. A simple agebraic expression can be derived within the single-band tight-binding model and a
simple-cubic geometry.™*! In a general case, the surface Green’s function can be expressed in terms of
the Green's function for the bulk metal,**? the latter being calculated in momentum space using
standard techniques. Then, the sample is grown by adding atomic layers with impurity atoms
distributed randomly, layer by layer, onto the left lead. At every step the Green's function matrix
elements between atomic sitesin the last added layer are calculated by solving numerically the Dyson
equation:

Gia =(Hia —hy g\h|‘|+1)71- (14.4)

Here g is the Green’s function of the left semiinfinite lead with added | layers (O<| <L) of the
sample (before adding the layer 1+1), g1 is the Green's function of the left semiinfinite lead with
added I+1 layers of the sample (after adding the layer 1+1), Hi., is the Hamiltonian of the added layer
I+1, hy 41 is the hopping (bonding) between atomsin the new layer [+1 and atomsin the previous layer
|. Once the sample has been fully-grown, the last layer is bonded to the right lead in order to obtain
the Green's function G(E;)of the full system, which enters the expression for the conductance

(14.2). We note that this method gives an exact solution for the given model and geometry and
describes the conductance for a particular disorder/impurity configuration. The configurational
averaging should be performed numerically by generating a number of random disorder/impurity
configurations.

Asano et al.**® implemented this approach for studying GMR in a Fe/Cr magnetic multilayer
within the CIP and CPP geometries. They used a single-band s-valent tight-binding model within a
simple cubic geometry with (001) orientation of atomic planes and constant hopping h between
nearest-neighbors (so that hy j+1=hd;j in equation (14.3)). They introduced a Stoner exchange splitting
2J of the spin bands in Fe, so the on-site atomic energies of the majority- and minority-spin electrons
were equal E'ee=Epe—J and E*re=Ere+J respectively. They assumed that Cr was non-magnetic with
on-site atomic energy chosen to be equal to the minority on-site atomic energies of Fe, i.e. Eq,=E're.
Due to this the minority-spin electrons do not experience a potential step (or roughness potential) for
the parallel alignment of the magnetizations. Using this model Asano et al. studied the effect of
interface roughness and bulk disorder on CIP and CPP GMR. The interface roughness was introduced
through substitutional randomness at the interfacial layers. This implied that in the Fe layer, each
atom adjacent to the Cr layer was replaced by the Cr atom with a probability c. Similarly, in the Cr
layer each atom adjacent to a Fe layer was replaced by the Fe atom with the same probability c. The
bulk disorder was modeled by a random variation of the on-site atomic energies of the Fe and Cr
atoms with a uniform distribution of width y, which was assumed to be spin-independent and was
allowed to vary in the calculations. The resulting conductance was averaged over 100 random
configurations of roughness or disorder.

As is evident from Fig.25a, the magnitude of CPP GMR is much larger than the magnitude of
CIP GMR and they behave differently as a function of the interface roughness, the measure of which
is the intermixing concentration ¢ of the two monolayers forming the interface. Not unexpectedly,
within the model considered the interface roughness has a beneficial effect on CIP GMR, becauseit is
the only mechanism of spin-dependent scattering and, therefore, CIP GMR increases with c (the full
squares in Fig.25a). The presence of steps in the electronic potential at the interfaces has little
influence on CIP GMR, which is found to be close to zero in the absence of roughness. On the
contrary, a sizeable CPP GMR is found in the absence of any roughness, the latter only weskly
reducing GMR (the open circles in Fig.25a). This is the result of the spin-dependent potential of the
multilayer, which effects differently the number of electrons contributing to the conduction for the
parallel and antiparallel configurations (see also section 15). Figure 25b shows the magnitude of
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GMR as a function of bulk disorder within the multilayer, which is measured by the width of the
distribution in the on-site atomic energies y. As is seen from the figure, the value of GMR decreases
with increasing y for both the CIP and CPP geometries. Thisis adirect consequence of the increasing
scattering in the “good” minority conduction channel, which reduces the conductance within the
parallel configuration of the multilayer.
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Fig.25 Calculated GMR of (Fe/Cr), multilayer within a single band tight-binding model as a
function of interface roughness ¢ (a) and bulk disorder y (b). Each metal within the
multilayer layer consists of three atomic monolayers of cross section 12x12 atoms.
Roughness is measured in terms of the intermixing concentration c of the two monolayers
forming the interface. Disorder is introduced as a random variation in the on-site atomic
energy levels of width y. The tight-biding parameters in units of the hopping integral h are
as follows: Ere=—0.5, E=05, J=1, E=0. The results are averaged over 100
roughness/disorder configurations. In figure (b) c is fixed at 0.2. Note the definition of
GMR as 4R/Ryp. After Asano et al.™®

A similar tight-binding model was used by Itoh et al.*** who studied the combined effect of
roughness and potential barriers at the interfaces on CIP and CPP GMR in magnetic multilayers.
Unlike Asano et al.,**® they used the coherent potential approximation (CPA)*?'* to perform their
configurational averaging. Within the CPA the disordered aloy (at the interface) is replaced an
effective medium which is characterized by the Hamiltonian He=Ho+X, where the non-hermitian self-
energy operator X is defined by equation (13.12). The approximate solution for £ can be found by the
self-consistent condition that the scattering of electrons in the effective medium by any site (asingle-
site CPA) or any cell (asingle-cell CPA) vanished on average. Itoh et al.*** used the single-cell CPA,
which is a better approximation than the single-site CPA due to alarger number of atoms, over which
the configurational averaging is performed exactly. Within the single-cell CPA they derived self-
consistent analytic expressions for the conductivity including the vertex corrections. They found that
in the CIP geometry the vertex corrections vanish, whereas in the CPP geometry the vertex
corrections do not necessarily vanish. Since the single-cell CPA is computationally expensive, Itoh et
al. carried out numerical calculations in the weak-scattering limit for thin metal layers consisting of
three atomic monolayers. Their results for GMR are consistent with those predicted by Asano et al.**®
within the recursive technique. They find that the CPP GMR is larger than the CIP GMR, which isa
consequence of the spin-dependent potential steps at the interfaces introduced in their model. The
difference between the CPP and CIP geometries decreases strongly with decreasing step size. The
interfacial roughnessis favorable to CIP GMR but has a small negative effect on the CPP GMR. They
also find that the contribution from the vertex correction to the CPP conductance is negligible. This

50

result might be the consequence of the small multilayer period, which was used in computations, so
that the mean free path is much longer than the layer thickness.

The recursive technique was used by Todorov et al.’*® for calculating CIP GMR of the
FM/NM/FM trilayer to study the effect of band structure and interface roughness within a single-band
tight-binding model. There are three major differences between the models used by Todorov et al. and
Asano et al.1*® First, Todorov et al. introduced different hopping integrals for the up-spin and down-
spin electrons in the ferromagnetic metal. This was supposed to reflect the difference in the majority-
and minority-electron dispersions and the density of states at the Fermi energy, which are typical for
real ferromagnetic metals. The on-site atomic energies were assumed for simplicity to be the same for
al the atoms. Second, the interface roughness was introduced as steps of random length I, along the
trilayer with a correlation length I, defined by |co=[epl] This alowed studying the effect of the
roughness correlation length (i.e. the step density) on GMR. Third, the calculations were performed
for arange of trilayer lengths L, and the linear region of the R versus L relation was used to obtain the
Ohmic resistivity p=A(dR/dL), where A is the trilayer cross section. This eliminated the effect of
contact resistances, which affected the value of GMR that are obtained directly from R for a fixed
L.*® The range of L, from which p was calculated, exceeded the effective mean free path in the
trilayer by afactor between 5 and 10, so that the diffusive regime of conduction is being modeled.
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Fig.26  Calculated GMR of a FM/NM/FM trilayer within a single-band tight-binding model as a
function of the correlation length of roughness |, (a) and as a function of ferromagnetic layer
thickness dry (b). The width of the trilayer is 8a and the NM layer thickenessis 4a. The band
structure of the FM metal is approximated by the two spin bands with different hopping
integrals, namely h'=1 and h'=1/3. Other parameters are as follows: E=-0.5, hyy=1, bulk
disorder parameter y=0.5, Ery=Eny=0, in figure (8) dry=43, in figure (b) l.x=2a. The solid
lines are eye guides. After Todorov et al.'*

Todorov et al. find a sizable CIP GMR in the absence of the interface roughness. The effect
arises from the difference in the mean free path and bulk resistivity between the up-spin and the
down-spin channels in the magnetic material, which in turn comes from the respective difference in
the density of states and the Fermi velocity. GMR decreases with increasing bulk disorder,
approaching zero in the limit of the mean free path for both spins becoming smaller than the trilayer
thickness. The above results indicate that the spin-dependent band structure, in conjunction with the
intrinsic bulk disorder in real systems, is a sufficient condition for GMR. The chemically sharp
interfacial roughness generally enhances the effect. The contribution of the roughness, however,
becomes quantitatively significant only in the limit of sufficiently dense interfacia steps (small
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correlation length of the roughness), sufficiently weak bulk scattering, and sufficiently thin magnetic
layers. This is evident from Figs.26a and 26b. Fig.26a shows GMR as a function of the roughness
correlation length. As is seen from the figure, with increasing correlation length GMR decreases,
approaching its value without roughness. These results are consistent with the experimental data by
Schad et al.” on GMR in epitaxial Fe/Cr multilayers discussed in section 7 (see also Fig.14a).
Fig.26b shows the dependence of GMR on the magnetic layer thickness. As can be seen from the
figure, GMR decreases with increasing drm, but in the case with the roughness, the decrease is faster
than in the case without the roughness. This result is consistent with the different behavior of bulk
and interface spin-dependent scattering predicted by the semiclassical free-electron model (see section
12).

Although some band structure effects have been included in the models of Asano et al.**® and
Itoh et al.X** by introducing the spin-dependent multilayer potential and in the model of Todorov et
al.}® by using the spin-dependent band widths, in general single-band tight-binding models are not
able to describe accurately the spin-polarized band structure of real magnetic layered systems. A more
accurate band structure was considered by Itoh et al.**” for studying the material dependence of
magnetoresistance and thermoelectric power in Fe/TM and Co/TM multilayers, where TM = Sc, Ti,
V, Cr, Mn, Ru, Rh, or Pd. They used the tight-binding d-band model and calculated self-consistently
the electronic structure and the magnetic moments of rough Fe/TM and Co/TM interfaces. They
ignored, however, the contribution from the sp bands and their hybridization with the d bands which
is, aswe will see below, crucia for GMR.

V. MULTIBAND MODELS

As has aready been noted above, free-electron and single-band s-valent tight-binding models
oversimplify the electronic structure of the magnetic multilayers which are used in GMR experiments.
These models cannot account realistically for the angular character of the d orbitals, which is partly
responsible for the magnetism in transition metal ferromagnets. They neglect, moreover, the
contribution from the d bands to the electronic transport, which isimportant due to the presence of the
d bands at the Fermi energy, as for the minority-spin electrons in Co (see Fig.3c). These models also
ignore the hybridization between the sp and d electrons which is, as we will see, very important for
GMR. Only accurate multiband models can adequately take into account the above effects.

Powerful methods of electronic band structure calculations have been developed during the last
few decades, which are based on density-functional theory (for a review see, e.g., ref.148). These
methods do not involve any empirical parameters and are therefore referred to as “ab-initio” or “first
principles’. Density-functional theory is a general approach for calculating the ground-state properties
of an interacting electron gas in the presence of an external potential. It is based on the Hohenberg
and Kohn theorem™® which states that the ground-state energy of the many body system is a unique
functional of the electronic charge density n(r). Kohn and Sham®* showed that minimizing the total
energy under assumption of the electronic charge density being a sum over all occupied single-particle
states yi(r), i.e.

)= 5w of v.1)
leads to the set of self-consistent equations

On* 2 M), B nr)t o

T aml) Ve o e WO =B ). (V.2

Here the wave functions ((r) and eigen-energies E; are labeled according to a state index i. Equation
(V.2) is similar to a single-particle Schrédinger equation with an effective Hamiltonian, in which the
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first term is the kinetic energy, the second term is the external potential that includes the electrostatic
potential from the nuclei, the third term is the Hartree potentia of the tota electronic charge
distribution, and the fourth term is the exchange-correlation potential. The exchange-correlation
potentia includes all many-body effects and, therefore, cannot be calculated exactly. The common
approximation is the local density approximation (LDA). Within the LDA the exchange-correlation
energy Ex[n(r)] for an inhomogeneous system is assumed to be given by the exchange-correlation
energy density e [n(r)] for a homogeneous electron gas of charge density n(r) so that
E,.[n(r)] =Iexc[n(r)]n(r)dr . The LDA is formally justified for slowly varying densities, but it has

been found in practice to provide a good description of the ground state properties of non-magnetic
transition metals, in addition to the more free-electron-like sp-valent metals. In particular, density
functional formalism can be extended to magnetic systems™ by introducing the spin densities n'(r)
and n‘(r), so that the charge density is n(r)= n'(r)+ n‘(r). In this case the single-particle wave
functions become spin-dependent, the exchange-correlation energy becomes a functional of the spin
densities, Ex[n'(r),n'(r)], and the LDA is generalized by the LSDA, which is the local spin-density
approximation.™ The Kohn-Sham equations (V.2) have to be solved self-consistently, because both
the Hartree and exchange-correlation potentials depend on the output density. The resulting single-
particle eigenfunctions yi(r) and eigenvalues E; can be used for calculating transport properties.*®

A variety of techniques have been developed to solve the Kohn-Sham equations, among them the
augmented plane wave method (APW),** the Green's function Korringa-Kohn-Rostoker (KKR)
method™® and the linear-muffin-tin orbital method (LMTO).*® All these methods can be
implemented within the “full-potential” approach, which provides a numerically exact solution. Most
of calculations are, however, performed using shape approximations for the potential, such as the
muffin-tin approximation or the atomic sphere approximation (ASA), which work well for close-
packed crystal structures. These approximations make the computations much faster without
significant loss in accuracy. If applied to the electronic band structure of the bulk transition 3d metals
all these methods give similar results. An example of the band structure calculated using the LMTO-
ASA method isgiven in Fig.5 for bulk Cu and Co.

The multiband tight-binding approximation is a more empirical approach for calculating the
electronic band structure, which is a generalization of the single-band approximation considered in
section 14. Although not as accurate as the ab-initio models, the multiband tight-binding models
provide valuable insight into electronic transport by simplifying the physicsinvolved. They also allow
considerable saving in computer time compared to full-scale first-principles calculations. The
multiband models for transition metals include the valence s, p and d orbitals, which are characterized
by different on-site atomic energy levels. The effects of bonding and hybridization enter through two-
center hopping integrals between atomic orbitals with characteristic angular momenta. The angular
variation in the hopping matrix elements with neighboring sites has been tabulated by Slater and
Koster.® Spin polarization is treated by introducing two different sets of tight-binding parameters for
the mgjority and minority spins. For the 3d ferromagnets sizable spin dependence appears, however,
only for the on-site energies of the d orbitals, which reflects the Stoner exchange spitting of the spin
bands.®* The values of the tight-binding parameters, i.e. the hopping integrals and the on-site atomic
energies, can be obtained by fitting the tight-binding bands to the bands calculated by the first-
principle methods described above.™ This makes it possible to represent accurately the electronic
structure of the transition metals. The electronic structure for amultilayer can be built either by fitting
the ab-initio band structure for this multilayer or from the tight-binding parameters of the respective
bulk metals. In the latter case the hopping integrals between non-equivalent species can be set as the
geometric mean of the respective hopping integrals for each species and the on-site energies can be
set to equate the Fermi energies of the respective bulk metals. In this approximation the tight-binding
model for the multilayer does not describe self-consistently the rearrangement of the electronic charge
at the interfaces. Some self-consistency can be introduced using the condition of local charge
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neutrality,"> in which the relative position of the on-site atomic energies is adjusted to guarantee zero

net charge on each atom. This is a reasonable approximation for metallic multilayers.

The multiband tight-binding model can be derived from first-principles using the tight-binding
linear muffin-tin orbital (TB-LMTO) method,™® in which the basis muffin-tin orbitals are screened by
the presence of their surrounding neighbors into a more localized or tight-binding form. Using the
tabulated LMTO structure constants a set of nearest-neighbor tight-binding parameters can be
generated for a magnetic layered system by solving the Dyson equation for the screening self-
consistently. These parameters can then be used as input for cal culating conductance.

The above first-principle and tight-binding methods can be used for calculating the electronic
structure of magnetic thin-film systems. However, in order to analyze transport properties, these
models have to be extended to include disorder, which generates a random potential and scatters the
electrons at the Fermi energy. Including disorder is important because al the experiments on GMR
performed to date are carried out in the diffusive regime, in which the conductance is limited by
scattering. Within the diffusive regime the sample dimensions are much larger than the mean free
path. A readlistic description of disorder is one of the key problems for predicting GMR because
depending on the model for disorder the result for GMR can be very different. We will discuss
various approached to include disorder and to treat GMR in the diffusive regime of conduction in
sections 16-18.

Opposite to the diffusive transport regime, the ballistic regime assumes that the sample
dimensions are much smaller than the mean free path.’®® In this regime the conductance is not
affected by scattering but is determined entirely by the band structure and the device geometry. All the
complications resulting from the disorder in the diffusive regime do not exist in the ballistic regime,
which allows parameter-free first-principle calculations of GMR to be performed.*®%32 Although
the ballistic regime has not yet been probed experimentally in GMR materials, considering this limit
for conduction is useful to demonstrate the importance of the spin-polarized band structure for GMR.
This point will be illustrated in the next section.

15. Ballistic limit

The conductance of a disorder-free system is determined by the kinematic motion of the
electrons. Even though the electrons passing through the sample are not scattered, the conductance of
the sampleis finite due to its finite cross-section. The magnitude of the conductance is determined by
the electronic band structure of the material from which the sample is fabricated and can be calculated
from first principles. In order to derive the expression for the ballistic conductance I' we write down,
first, the expression for the net current which flows across the sample of cross section A due to
applied voltage V. The net current per spin, |, is given by the difference in the number of electrons
propagating in opposite directions, i.e.

| :{dsDZJ%ev”(k){ f[E, (k) -eV]- f[E, (K)]}, (15.1)

where f(E) is the Fermi distribution function, ds is a cross sectional element of the sample, and the
velocity of band 1 can be determined from the band dispersion E, (k) by v, (k) =dE,(k)/xdk .

Here as before we have omitted the spin indices. Assuming that the voltage is small and taking the
zero-temperature limit we arrive at the conductance

00 e, dk 1 )
F—%Hao—Ae ;I(ani‘nljln(k)‘d[E,,(k) E,], (15.2)

where n is a unit vector in the transport direction and the factor ¥2 appears because only electrons
moving in one direction contribute to the current. Mathematically this formula represents a weighted

density of states at the Fermi energy. This formulais suitable for practical calculations of the ballistic
conductance and can be applied to magnetic multilayers.

The formula (15.2) can be rewritten in a different way. Performing explicitly the integration in
equation (15.2) with respect to the momentum k, along the direction of transport z we obtain

e A e’
M= LW =N, 59

where k| is the transverse momentum, i.e. the momentum perpendicular to the current, and Q, (k) is
the number of roots in the equation E, (k,,k,) = E; for a given k; and spin. This representation is

equivalent to the Landauer expression for the ballistic conductance (see, e.g., ref.22 for a discussion).
According to equation (15.3) the conductance is determined by the number of conducting channels N
opened for the current-carrying electrons, which is determined by the density of the transverse modes
at the Fermi energy.

We note that the ballistic conductance of an ideal periodic structure does not depend on the
length L of the sample along the direction of the current (which makes the conductivity infinite). As
long as L is much smaller than the mean free path, the conductance per unit area is determined only
by the number of open conducting channels, i.e. entirely by the band structure. We also note that
unlike conductivity, the ballistic conductance in systems with cubic symmetry is, in general, not
isotropic.
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Fig.27  Ballistic conductance in the (001) direction for bulk fcc Cu (a) and bulk fcc Co (b) as a
function of electron energy within a rigid band structure. The vertical line displays the
Fermi energy. The dashed line in figure (&) shows the free-electron result. The solid and
dashed lines in figure (b) show the conductance of the mgority and minority spins
respectively. After Schep et al.**®

Using the LMTO-ASA method and formula (15.2) Schep et al.’®® calculated the ballistic
conductance of bulk Cu and Co metals, which is shown in Figs.27a,b respectively. Although only the
value at the Fermi energy is relevant, the conductance is plotted as a function of the band filling to
indicate the contributions from different bands. Schep et al. found that a the Fermi energy the
ballistic conductance of Cu is well described by the free-electron estimate (see the dashed line in
Fig.27a). For the energy range between 1.5 and 4eV below the Fermi energy the ballistic conductance
is significantly enhanced due to the high density of electrons of mainly d character. Thisis opposite to
the diffusive regime in which the heavy d electrons contribute little to the conductance (see the
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discussion in section 2). The enhancement is, however, considerably less pronounced than that in the
corresponding density of states (compare to Fig.5a). This is due to the weighting in equation (15.2)
with the velocity, the latter being much smaller for the relatively flat bands in this energy range. For
the energies more than 6eV below the Fermi energy there is only one band which has mainly s
character. In magnetic Co the degeneracy between the up- and down-spin electrons is lifted. As is
seen from Fig.27b, the ballistic conductance depends on the spin direction due to the spin dependence
of the electronic structure. For the majority-spin electrons the ballistic conductance resembles that in
Cu. The minority-spin d bands are shifted to higher energies resulting in the higher minority-spin
conductance at the Fermi energy. In contrast to the results for Cu and for the majority spins of Co,
Schep et al. found no reasonable free-electron estimate for the minority-spin conductance of Co,
which reflects the complicated band structure of Co for this spin direction at the Fermi energy.

The difference in the electronic structure for the majority and minority spins in bulk Co at the
Fermi energy leads to a difference in the spin conductance, which inevitably should affect the
conductance of a Co/Cu multilayer and hence result in GMR. This has, indeed, been found by Schep
et al.,*®? who predicted that in the ballistic regime the CPP conductance increases by more than a
factor of two when the relative orientation of the magnetizations of adjacent magnetic layers in a
Co/Cu multilayer is changed from antiparalel (AP) to pardlel (P). Such a sizable difference in the
conductance reflects the contribution from electrons of different orbital momenta to the current.
According to equation (15.3) the ballistic conductance is determined by the geometric properties of
the Fermi surface, namely the projection of the Fermi surface in the direction of the current Q, (k).

Schep et al. investigated this projection in k; space for the Co/Cu multilayers and found a significant
difference between the majority and minority spins. Although for the majority spins within the P
configuration Q, (k) resembles the free-electron picture, the minority spins within the P

configuration and both spins within the AP configuration are not free-electron-like. The majority-spin
s electrons shunt the current within the P magnetizations making the conductance for this
configuration much higher than that for the AP configuration, which is mainly determined by the d
electrons.

Fig.28 shows the variation of the ballistic conductance and GMR for Co,/Cu, multilayers as a
function of the layer thickness n for the CPP and CIP geometries.’®® We see from Fig.28a that for
small layer thicknesses the CPP conductance decreases rapidly with n, which arises from the
evanescent states in the Co and Cu layers and from the deviations in the potential near the interfaces
from the bulk value.®® For larger layer thicknesses the conductances approach constant values
corresponding to CPP GMR of about 100%. We see from Fig.28b that the GMR in the CIP geometry
is much lower than in the CPP geometry and decreases with the layer thickness. In this case the
minority-spin electrons display a higher conductance within the P configuration reflecting that in bulk
Co. We note that the calculated values of CIP GMR are much lower than the experimental values
obtained for the Co/Cu multilayers (e.g., ref.44). This indicates that scattering must be included in
order to obtain agreement with experiments.

Asis seen from Fig.28, both the CIP and CPP conductances display small damped oscillations as
a function of the number of monolayers. These oscillations originate from quantum size effects and
were first predicted by Mathon et al.** for the CPP GMR within the ballistic transport regime. Using
a single-band tight-binding model and the recursive approach Mathon et al. predicted the presence of
two types of oscillation. The first type of oscillation results from stationary points at the Fermi surface
and has a period, which is determined by the wave vector spanning the Fermi surface of the spacer
layer in the direction perpendicular to the planes. This type of oscillation has the same period as that
predicted earlier for the oscillatory exchange coupling.’® The second type of oscillation results from
potential steps at the interfaces and is determined by the transmission cutoffs of the transmitting states
close to specular reflection. Using a similar approach to calculate the ballistic conductance and CPP
GMR in Co/Cu multilayers within a multiband tight-binding model Mathon et al.’®® found the

56

presence of both types of oscillation periods. They showed that the conductance oscillations for the
majority-spin electrons within the P configuration have periods, which are determined by the
stationary points at the Fermi surface of Cu. On the other hand, the conductance oscillations of the
minority-spin electrons in the P configuration and either-spin electrons in the AP configurations are
dominated by the periods which are determined by the conductance cutoff due to a mismatch between
the Co and Cu bands across the Co/Cu interfaces. We note that neither type of oscillation has yet been
observed in experiments on CPP transport, which is most probably due to the interface and bulk
disorder in real multilayers. The latter fact is confirmed by calculations in the diffusive regime of
conduction, which will be presented in section V1.
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Fig.28  Dependence of GMR (solid circles) and conductance of the (001)-oriented Co,/Cuy
multilayers for the majority-spin (diamonds) and the minority-spin (squares) electrons in
the parallel configuration and for either-spin electrons in the antiparallel configuration
(open circles) within CPP (a) and CIP (b) geometries. After Schep et al

Schep et al.*® have demonstrated the crucial role of the hybridization between the dispersive sp
bands and the localized d bands for GMR within the ballistic regime. They switched off the sp-d
hybridization by setting the matrix elements between the sp and d orbitals in the LMTO structure
constants equal to zero. This resulted in a significant drop of CPP GMR, e.g., from 120% to 3% for
the (001)-oriented Cos/Cus multilayer. The origin of this effect can be explained as follows. The
unhybridized sp and d bands carry the electric current independently and can thus be considered as
two parallel conduction channels. In the absence of hybridization the sp electrons are not spin-
polarized and, therefore, do not contribute to GMR. On the other hand, although the d electronsin Co
are spin-polarized, they do not contribute to the conductance because in the absence of the sp-d
hybridization they are not coupled to the sp bands of Cu (which are the only bands at the Fermi level)
and, therefore, can not be transmitted across the spacer layer. The importance of the sp-d
hybridization for GMR suggests that theories which ignore this hybridization are leaving out a crucia
ingredient. We will seein section 17 that the sp-d hybridization aso plays a decisive role for GMR
within the diffusive regime.
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16. Semiclassical theory

Accurate models for the band structure can be incorporated within semiclassical transport theory
to calculate GMR in magnetic multilayers in the diffusive regime of conduction. The simplest way to
proceed is to use the relaxation time approximation, as was described in section 12. In this case the
conductivity of a bulk homogeneous system can be calculated using expression (12.10). Although
magnetic multilayers are not homogeneous in the direction perpendicular to the planes, one can still
use this expression within the CIP geometry, because as was discussed in section 13 the interna
electric field is a constant in this case due to the homogeneity of the multilayers in the plane of the
layers. The validity of the relaxation time approximation is often not known, but even within this
approximation an accurate quantum-mechanical calculation of the relaxation timeis not trivial and, as
we will see below, requires sophisticated techniques. In addition, the relaxation time depends on the
model for disorder which determines the mechanism of scattering.

The simplest approach is to assume a constant relaxation time, as was done by Oguchi.*®” In this
case formula (12.10) for the conductivity in the v direction per spin can be rewritten as

w o ;2 dk
g —erZJ'(Zﬂ)3

where we have introduced the integration over the Brillouin zone and displayed explicitly the
summation over band index n. As is seen, the conductivity is factorised into a scattering term 1 and
the electronic structure term. The electronic structure term is similar to that in the ballistic regime of
conduction (compare to equation (15.2)) and can be evaluated without any free parameters. Within the
approximation of a state- and spin-independent relaxation time 7 the GMR ratio does not depend on T
and is entirely determined by the band structure. Oguchi calculated self-consistently the electronic
band structure of a Cos/Cuz multilayer using the LM TO method and found values of GMR of 47% for
CIP and 170% for CPP. These vaues are higher than those obtained within the ballistic regime
(although of the same order of magnitude), which is due to the additional velocity-weighting factor in
formula (16.1) which enhances the spin asymmetry. Oguchi was the first to point out the importance
of the band structure (the Fermi velocities) for GMR. However, his assumption of a state- and spin-
independent relaxation time is difficult to justify. In particular, neglecting the spin dependence of the
Tisunredistic, at least due to the density of states factor in equation (1.4) which is spin-dependent.

Zahn et al.™® used expression (16.1) for the spin conductivity to calculate GMR in Fe/Cr
multilayers, assuming that the relaxation time is spin-dependent (but still state-independent).
Scattering was introduced into their model by assuming the presence of Cr impurities in the Fe layers
within the low-concentration limit. They used an explicit expression for the spin-dependent scattering
probability

v, (k)| SLE, (k) - E], (16.1)
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in which the T matrix describes the scattering of an electron by an impurity embedded in the
multilayer. This expression can be considered as a generalization of the Fermi golden rule (1.4) to

include al orders of perturbation theory with respect to the scattering potential. The matrix elements

Ty me Were caculated using an application of multiple-scattering theory within the first-principle

KKR Green's function formalism, which was developed earlier in works by Dederichs and co-
authors.*® Using these matrix elements obtained for a Cr impurity in bulk Fe, for either spin direction
the state-independent relaxation time was calculated from expression (16.2) by a summation over
state indices according to

1M (k) = Z Pk’ (16.3)
n

and then by averaging over the Fermi surface. It was found that the ratio of the spin-relaxation times
a=1' /1, =0.11, which implies that the majority spins are scattered strongly at a Cr defect, whereas
the minority spins pass the defect weakly scattered. The relaxation time for the antiparallel
configuration was estimated by a series-resistor rule, i.e. 1/7,, = (/1" +1/1,)/2. Zahn et al.

calculated CIP and CPP magnetoresistance within an optimised LCAO (linear combination of atomic
orbitals) method using larger unit cells (Fes/Cr, and Fen/Crs with n,m<12) than those which were
used by Oguchi.*®” They predicted really giant effects of about 600% for CIP and of about 2500% for
CPP, which are much higher than the experimental values for Fe/Cr multilayers.

The approximation of a state-independent relaxation time was lifted in the work by Binder et
al.>™ of the same group, who calculated the state-dependent relaxation times and the spin-dependent
conductivity of the Co/Cu multilayer within a screened KKR method using semiclassical transport
theory. They introduced different 3d-metal impurities at the Co interface layer and compared the
resulting resistivities and GMR for the state-dependent and state-independent relaxation times. Their
results show that the approximation of a state-independent relaxation time overestimates the
resistivity of the majority-spin electrons by a factor of two and of the minority-spin electrons by about
10%, which leads to overestimating GMR. Nevertheless, the predicted values of GMR for the Fe, Ni
and Cu impurities are still huge (about 4000% for Fe and 6000% for Ni). For Ti, V and Cr impurities
an inverse GMR effect was obtained. Binder et al. also investigated the validity of the relaxation-time
approximation. They extended their semiclassical theory to calculate the scattering-in term (see
section 12) by solving the Boltzmann eguation iteratively. They found that the relaxation time
approximation gives very satisfactory results for the systems considered.

Butler et al."™ used a different model for disorder to calculate CPP GMR in the (111)-oriented
Co,/Cuy multilayers (up to n=m=6) within the semiclassical approximation. They assumed that the
ColCu interfaces are interdiffused with 1% intermixing of the Co and Cu atoms. The band structure of
the disordered multilayers was calculated using the single-site coherent potential approximation
within the KKR Green's function method. Assuming a sufficiently weak impurity scattering they
computed the relaxation time for each state at the Fermi energy, which isinversely proportional to the
imaginary part of the self-energy in equation (13.12). Then, using the state-dependent relaxation time
they solved the Boltzmann equation disregarding the scattering-in term and calculated the
conductivity of the multilayers for the parallel and antiparallel magnetizations. Similar to the works
by Zahn et al.*® and Binder et al.,'"° the values of CPP GMR obtained for the Co/Cu multilayers
were huge varying from about 1000% to 2000% for different layer thicknesses. Similar calculations
performed by Butler et al.*™ for the (111)-oriented FexNigy/Cu multilayers found even larger GMR
values.

Nesbet"? reached a similar conclusion for GMR in Co/Cu, and Fe/Cr, multilayers. He calculated
the state-dependent relaxation time according to equations (16.2) and (16.3) assuming that scattering
is caused by interdiffused atoms at the interfaces. The spin-polarized band structure and the scattering
T-matrix were computed by expanding the Bloch wave-functions into a large number of atomic
orbitals, using a full-potential multiple-scattering approach within the loca density approximation.
The semiclassical expression for conductivity within the relaxation time approximation (12.10) was
used to compute GMR. Consistent with previous cal cul ations magnetoresi stance due to this scattering
mechanism was found to be very large.

The highly overestimated values of GMR obtained by Zahn et al.,'® Binder et al.,*™® Butler et
al.,'™ and Nesbet'? is a direct consequence of the fact that the electronic structure of the impuritiesis
nearly identical to the electronic structure of the host atoms in one of the two spin channels which
leads to no scattering and shunting within this spin channel. This can be illustrated by calculations of
the number of valence electrons per atom in the Co/Cu and Fe/Cr systems shown in Figs.29a,b.*® As
is seen from Fig.293, in the Co/Cu system the number of Co majority-spin electrons matches very
closely the number of Cu electrons, whereas there is a strong mismatch in the number of minority-
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spin electrons. This matching in the majority-spin channel implies that the atomic cobalt and copper
potentials appear very similar to the majority-spin electrons leading to no scattering within this spin
channel when Cu impurities are imbedded in Co or vice versa. The same conclusion was obtained for
a NigoFex/Cu multilayer because the Fermi energy scattering amplitudes for majority-spin cobalt,
majority-spin nickel, and majority-spin iron (as an impurity in nickel) are all very similar.'” For the
Fe/Cr system the matching in the number of valence electrons per atom occurs for the minority spins
leading to aweak scattering of electrons in the minority-spin channel (see Fig.29b).

As was suggested by Butler et al.}”® the spin-orbit interaction, which was not considered in the
above calculations, might partly explain the discrepancy between theory and experiment. Indeed, in
bulk aloys the spin-orbit interaction, although small, is sufficient to avoid the near short circuits due
to lack of scattering in either spin channel (e.g., ref.174). Another reason could be the presence of
misaligned magnetic moments at rough interfaces due to the reduced exchange coupling, which as we
have seen in section 8 might play arole. However, we believe that the principle disagreement between
the theory and experiment originates from the neglect of scattering by intrinsic defects, which are
always present in the multilayer. In the above calculations it is assumed that the introduced impurities
are the only source of scattering, which is not the case in real experiments on GMR. We will seein
section 17 that arealistic model for disorder accounts for the experimentally-observed values of GMR
in the Co/Cu and Fe/Cr multilayers.
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Fig.29  Calculated number of valence electrons for the (111)-oriented Co/Cu/Co (&) and (001)-
oriented Fe/Cr/Fe (b) trilayers for the majority-spin (+) and minority-spin (1) electrons.
Note the matching for the majority spins in the Co/Cu/Co and matching for the minority
spinsin the Fe/Cr/Fe. After Butler et al. '

An interesting calculation was performed by Zahn et al.,'™ who investigated the effect of the
impurity position on GMR in Co/Cu multilayers. In order to study impurities with different scattering
spin asymmetries they assumed that the spin-dependent scattering potential V is a parameter, thereby
neglecting details of the impurity potential and its dependence on the site position r; within the

supercell. The scattering spin asymmetry was, therefore, defined as a =V' /V, . They considered the

wesak scattering limit in which the scattering rate (the inverse relaxation time) is determined by the
Born approximation

rikn) = 2V, () n B + 17 (164)

60

where ¢, (k,r;) isthe Bloch wave function of the multilayer without the impurities and n(r;, E;) is

the local density of states. In order to avoid short circuit effects due to states with low scattering
amplitude at the impurity position they added a constant scattering rate 7," in equation (16.4). Since

the scattering rate in equation (16.4) is proportional to the spin-dependent density of states at the
impurity site n(r,,E.), a strong position dependence of GMR is expected. Zahn et al. found that
n(r,,E-) is enhanced and have a strongest spin asymmetry at the Co interface in a Coo/Coy
mutlilayer, which is explained by the formation of quantum-well and interface states. Due to this the
magnitude of GMR is enhanced by the impurities with no spin asymmetry (a=1) when they are placed
at the Co interface. Thisis evident from the triangles in Fig.30, which shows the calculated values of
GMR for various positions and scattering spin asymmetries of the impurities. For impurities with a
stronger scattering of the minority than the mgjority electrons, a>1, the existing spin asymmetry in the
local density of states is amplified and leads to an even stronger enhancement of GMR (the circlesin
Fig.30). For the opposite spin asymmetry, a<l, the spin asymmetry of the local DOS and the
scattering potential compensate each other and GMR is reduced. As is seen from Fig.30, impurities
placed within the Cu layer are ineffective for GMR, which is ascribed to the small local DOS in Cu.
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Fig.30  Calculated CIP (opened symbols) and CPP GMR (closed symbols) of the (001)-oriented
Coy/Cu; multilayer as a function of the impurity position within the multilayer for the
impurities with various asymmetries in the scattering potential a =V’ IV, 1 a=1
(triangles), a=4 (circles), and a=0.25 (squares). The solid and dashed lines show the values
of CPP and CIP GMR respectively calculated for the scattering rate 7, 1 (V=0 in equation
(16.3)). The vertical dotted line separates the Co and Cu layers. After Zahn et al. ¥

It is interesting to compare the predictions of Zahn et al.,'” with the results of experiments by
Marrows and Hickey,”® (see section 8). Experimentally it was found that impurities with a<1 suppress
GMR, usually to a great extent when they are placed at the interface, and still have a considerable
effect when they lie several lattice constants away from the interface; impurities with a>1 sometimes
do provide an enhancement of GMR, but it is only to be found when they are a few ML behind the
ColCu interface; and impurities in the spacer layer have a dramatic effect by lowering GMR. These
findings are at odds with the theoretical predictions of Zahn et al. Marrows and Hickey™ suggested
that to reconcile the data with the theory one must admit in addition to the scattering by impurities
considerable spin-dependent scattering in the bulk of the Co layers, or that the impurities can affect
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the local density of states up to severa atomic sites away. Very recent calculations performed by the
same group'”® demonstrate, however, better agreement between the theory and the experiment.

A necessary condition for the validity of the semiclassical Boltzmann theory is a sufficiently low
impurity/defect density. In layered systems the Boltzmann formalism breaks down when the subband
energy splitting becomes comparable to the life-time broadening #/ 21 due to scattering by impurities
and/or defects. Aswe will see in the next section, this is the case for real multilayer structures, which
are used in experiments on GMR. The quantum-mechanical treatment of transport is necessary in
order to make a quantitative comparison between theory and experiment.

17. Tight-binding models

Experimental data show that magnetic layered systems contain alot of intrinsic structural defects
such as vacancies, stacking faults, lattice distortions, misfit dislocations and grain boundaries that are
produced during the process of deposition (e.g., ref.177,178). These defects influence the residua
resistivity making it much larger in thin films than in corresponding bulk metals. For example, Rijks
et al.'™ found significant scattering at the grain boundaries and other defects in sputter-deposited
copper and permalloy thin films which was dependent on the layer thickness. Scattering by these
defects must, therefore, be included in a redlistic model for GMR. However, simultaneous modeling
of al these defects including their structural and electronic properties is very complicated and
probably pointless because we do not have sufficient experimental information about distribution,
concentration, strength and other parameters characterizing these defects. A simplified approach to
include defect scattering in a model for GMR was developed by Tsymbal and Pettifor'’® within a
multiband tight-binding theory and a quantum-mechanical approach to electronic transport. In this
section we describe their model and main results which follow from this model.

The multiband description of the electronic structure within the tight-binding representation can
be obtained by generaizing the single-band Hamiltonian (14.1) to include the valence s, p and d
orbitals. We consider a perfect crystal which is divided into equivalent unit cells m consisting of
atomic sites j with associated atomic wave functions |mjal] where a denotes the orbital character.
Within the two-center, orthogonal tight-binding approximation the single particle Hamiltonian of the
perfect system H° is determined by the on-site atomic energies Ejq and by the hopping integrals

(Oja|H®|mj’a’) (index O denotes the origin of the system). In order to solve the Schrédinger
equation

H®|nk) = E, (k)|nk), (17.2)
the eigenstate \r]k) with band index n and wave vector k can be expanded in terms of the atomic
functions:

k) = Kl L (K)|mia), 17.2)

1
—3Se
N2
where N is the total number of cellsin the crystal, R, is the m-th lattice vector and r; is the basis
vector (a site position within the unit cell). The expansion coefficients c, ;, (k) are obtained by
solving the tight-binding secular equation

>H ja.jar (K)Cy e (K) = E, (K)C, 1o (K), (17.3)

JJa

where the matrix elements of the Hamiltonian are defined by

HO, o (k)= Ze'“Rm”'"”)(oJ'a\H °Imj'a’). (17.4)
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The tight-binding parameters, i.e. hopping integrals and the on-site atomic energies, can be obtained
by fitting the tight-binding bands of the elementa metals to the bands computed from first-
principles.® This makes it possible to describe redistically the band structure of magnetic
multilayers taking into account s, p and d orbitals, their full hybridization and spin-polarization.
Matrix elements of the velocity operator, which are necessary for calculating the conductivity, can be
found from the relation 7 v* (k) = aH (k) / k" .

The next step isincluding defect scattering in the model. We assume that the total Hamiltonian of
the disordered system can be represented as the sum of the perfect Hamiltonian H° and the scattering
potential V, H =H°+V . The scattering potential which reflects the presence of intrinsic defects
within the multilayer is assumed to effect the on-site atomic energy levels randomly so that

(miaV|mj'a’) =V, ;6,00 - (17.5)

ma ~mm' ™ jji' Y aa’

Here for simplicity the scattering potential is taken to be diagonal with respect to the cell, site and
orbital indices. The diagonal elements V,;, are taken to be randomly distributed such that

(Vo) =0, (17.6)
<Vn1’avm'j’a'> = y26mm’6jj'6aa' ' (177)

where (...) denotes the configuration average and y? is the mean square displacement of the on-site

atomic energies. The parameter y is a parameter in the theory. It characterizes the degree of disorder
within the system reflecting the scattering by defects and can be chosen to provide a redlistic
saturation resistivity of the multilayer.

We stress that in general the scattering potential, which is produced by a particular type of defect
or impurity in a magnetic system, is expected to be spin-dependent. However, GMR structures are
characterized by various types of defects. Physically this means that the spin asymmetry and the
strength of the scattering potential can vary from defect to defect. This fact is supported by first-
principle calculations,*® which show a different spin dependence of scattering produced by stacking
faults, twin boundaries and Cu impurities in bulk Co. On average, it is reasonable to assume no spin
dependence in the scattering potential, which in our model implies a spin-independent parameter .
Note that as we will see below the scattering rate remains spin-dependent as the result of the spin
asymmetry in the density of states at the Fermi level.

The zero-temperature conductivity per spin is expressed by the Kubo-Greenwood formula
(13.10), which requires configurational averaging as was described in section 13. This averaging can
be performed in the weak scattering limit, which is justified for GMR structures. Indeed, it is well-
known that within the single-band model the weak scattering limit is valid provided the random
potential is such that y <<A, where A is the bandwidth (e.g., ref.126). This expression may be
generalized to the case of the multiband system as yn(E; ) <<1, where n(E; ) is the average density of
states per orbital at the Fermi energy. We will find that in order to obtain typical experimental values
of the resistivity of the 3d-metal multilayer structures, i.e. 1-100 pQcm, one needs yto be in the range
from 0.1 to 1eV. Since n(E.) is of the order of 0.1eV™, the weak scattering approximation is
justified. In the weak scattering limit the self-energy, which enters equation (13.12) for the
configuration-averaged Green's function (G), is determined by = = (VG,V).*® Using the properties
of the scattering potential defined by eguations (17.5-17.7) and performing the averaging explicitly,
we obtain

K [oa®)

Qd
. (E)=y° 0.0, , 17.8
Ju‘Ja( F) y ZJ’(ZH)g EF _En(k)"'if ji"Yaa ( )
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where Q is the volume of the unit cell. It follows that the imaginary part of the self-energy will be
proportional to the partial density of states at the Fermi energy n,, (E;) related to sitej and orbital a.
In particular, we can define the partial scattering rates by
4.2 2
Tj; :Elmzja,ja(EF):?yznja(EF)’ (17.9)
which are spin-dependent due to the spin-dependence in the densities of states.
The final expression for the conductivity takes the form

Myol= 5 2]
h

la jaa’

dk
oy i 0N 00, (17.10)

where the mean free path operator A¥ (k) is defined by

N (k) = v* (k) Im[E,. - HO(k) - 2(E, )] (17.11)

and the self-energy is given by formula (17.8). The partial conductivities of; corresponding to site |
and orbital a can be used to determine the local (layer-dependent) contributions to the conductivity
from non-equivalent atoms (layers) j

gl = Z aly (17.12)

a

and the partial contributions from the s, p and d orbitals
gl = gty , (17.13)
| l; Z j

where | denotes s, p or d orbitals.

Fig.31a illustrates the model by applying it to calculating the conductivity of bulk fcc Cu as a
function of energy, or equivaently as a function of the Fermi energy within the rigid band
approximation. Comparing the solid line in the bottom panel of Fig.31ato the DOS in the top panel in
Fig.31a, we see that the conductivity of Cu is strongly suppressed within the d bands (-5eV < E <
1.5eV). The decomposition of the conductivity into its partial contributions shows that in thisinterval
of energies the conductivity is mainly determined by the d electrons, the weight of the sp character
varying from about 10% to 30%. The very low contribution of the sp electrons to the conductivity
within the d bands is connected with the strong hybridization between the sp electrons and the d
electrons, which flatten the sp bands reducing their velocity. Outside the d band the conductivity
rapidly increases and the contribution of the sp electrons becomes dominant. The Fermi level in bulk
copper lies high above the d bands, so that most of the current is carried by the sp electrons, the d
contribution being just 3%.

As s evident from Fig.31b, the d bands of Co are exchange-split due to ferromagnetism, which
makes the contributions of the two spins to the conductivity different. Similar to Cu, for energies
within the d bands the conductivity is low and mainly determined by the d electrons. Above and
below the d bands the conductivity rapidly increases with a crossover from mainly d to mainly sp
contributions (not shown). The Fermi level in Co lies above the top of the d band for the majority-
spin electrons but fals inside the d band for the minority-spin electrons. This results in the sizeable
difference between the conductivities for the two spins at the Fermi energy. As can be seen from the
bottom panel in Fig.31b, & exceeds o' by a factor of five. Note that the spin asymmetry in the
conductivity a=g’'/c* depends on the degree of disorder y. We also note that the spin asymmetry is
opposite to the prediction in the ballistic regime (see Fig.27b), according to which the minority-spin
conductance in Co is higher than the majority-spin conductance.
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The results of these model calculations for the bulk metals show that the band structure plays a
very important role in the conductivity. In particular, (i) the contribution from the d electrons is
sizeable and in general can not be neglected; (ii) the sp-d hybridization is important due to reducing
the conductivity of the sp electrons within the d bands; and (iii) the exchange splitting of the d bands
resultsin the strong spin asymmetry of the conductivity at the Fermi energy.
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Fig.31  Density of states (top panels) and conductivity (bottom panels) as a function of electron
energy for bulk fcc Cu (a) and for bulk fcc Co (b). Conductivity is calculated for y=0.5eV
and decomposed into the contributions from the sp and d electrons for Cu and from the
majority and minority spins for Co. The vertical line shows the position of the Fermi level.
After Tsymbal and Pettifor.”

All these effects manifest themselves in the GMR multilayers. Fig.32a shows the density of states
(the top panel), conductivity (the middle panel) and GMR (the bottom panel) of a Cos/Cus(001)
multilayer calculated as a function of energy. Similar to bulk Co, the DOS of the parallel-aligned
Co/Cu multilayer is asymmetric between the majority and minority spins. This is reflected in the
conductivity o. For the energies that lie within the d band the sp electrons are slowed down by the
hybridization with the d electrons and the conductivity is low. Above the top of the d bands o
increases rapidly. Thisincrease is due to the “acceleration” of the sp electrons which are less affected
by the sp-d hybridization above the d bands. The top of the d bands for the majority spins lies at
approximately 0.5eV below the Fermi energy and for the minority spins at about 1eV above the Fermi
energy. Therefore, in the interval of the energies from -0.5eV to 1€V the difference between ¢ and o'
is most pronounced. The presence of the d levels up to 1€V above Er for the AP configuration makes
the conductivity per spin in this case similar to the conductivity of the minority spin electrons for the
P configuration. This results in the crucial difference between the op and gae and, consequently, in
GMR. As seen from the bottom panel in Fig.32a the large values of GMR are predicted only in the
interval of energies between the top of the majority-spin d band and the top of the minority-spin d
band. As the Fermi level in Co/Cu multilayers lies within this interval a sizeable value of GMR can
be observed in this system.
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An interesting effect, which is evident from the bottom panel in Fig.32a, is that GMR in the
Co/Cu system increases with increasing energy above the Fermi level. A pronounced peak in AR/R
appears for hot electrons at about 1eV above the Fermi level, taking the large value of nearly 400%
for the CPP geometry. The enhancement of GMR in Co/Cu multilayers has been observed by
Monsma et al.*®* who have measured more than 390% CPP magnetocurrent change in a “spin-valve
transistor”. The energy of the hot electrons in this device was defined by the Schottky barrier heights
of about 0.7eV for the collector and about 0.6eV for the emitter. The results of those calculations give
a clear interpretation of this enhanced GMR effect, which originates from the increasing spin
asymmetry in the electron velocities for hot electrons up to 1eV above the Fermi energy. We note,
however, that an accurate quantitative description of the spin-vale transistor requires including non-
elastic scattering which is not taken into account in the above model. Recently a huge change in the
magnetocurrent of 560% at 100 K has been measured by Jansen et al.*¥? in a spin valve transistor with
aNigoFex/Au/Co base.
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Fig.32  Density of states (top panels), conductivity (middle panels) and GMR (bottom panels) of the
Co,/Cu, (8) and Fe,/Cr, (b) multilayers as a function of electron energy calculated within the
tight-binding approximation. The vertical line shows the position of the Fermi level. After
Tsymbal and Pettifor.*”®

The Fe/Cr system behaves differently from the Co/Cu system. As is evident from Fig.32b the
Fermi level in the Fes/Cr, multilayer lies within the d bands for both spin orientations. However, the
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DOS exhibits a pronounced valley for the minority spins, with the Fermi level lying aimost at the
bottom of this valley, which follows from the similarity of the minority DOS of Fe and the DOS of
Cr. We note that the presence of this valley in the minority DOS of bulk Fe makes the minority-spin
conductivity higher than the majority-spin conductivity, i.e. a=c'/d* <1, which is opposite to bulk
Co.X”® For the parallel-aligned multilayer the o* displays an enhancement for electron energies lying
in the region of this valley (see the dotted line in the middle panel of Fig.32b). On the contrary, the ¢
for the P orientation and the conductivity for the AP orientation do not change essentialy in this
interval of energies (the dashed and the solid lines in the middle panel of Fig.32b). This resultsin the
difference between op and oap and, consequently, in GMR for the energies close to the Fermi level
(the bottom panel of Fig.32b). The variation of GMR as a function of energy shows that contrary to
the Co/Cu multilayers GMR decreases above the Fermi level.

The magnitude of GMR decreases with increasing disorder. As is seen from Fig.33 the value of
GMR in a Co4/Cu, multilayer drops by an order of magnitude, i.e. from about 105% to 15% as the
disorder parameter y changes from 0.4eV to 1.2eV. The corresponding saturation resistivity varies
from 8uQcm to 55uQcm (Fig.333), spanning the range of experimental values. This drop in GMR
with increasing disorder has an important underlying physics.X® It is related to the interband
transitions driven by the applied electric field, which makes the quantum mechanical description
different from the semiclassical approach. In metals, in the absence of disorder these transitions may
be important only in an exceedingly small region of k-space near points where two bands become
degenerate.® In the presence of disorder, however, the electronic levels are broadened by the value of
ImZ . If this broadening becomes comparable with the distance between bands even an infinitesimal
small electric field can lead to the interband transitions. In this case, the semiclassical approximation
breaks down.
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Fig.33  Conductivity of the Co/Cu multilayer as a function of the root-mean-square variation of the
on-site atomic energies y, which characterizes the degree of disorder within the multilayer.
After Tsymbal and Pettifor.”®

The drop of GMR in the Co/Cu multilayer within increasing disorder, which is shown in Fig.33b,
can, therefore, be explained as follows. The conductivity of the parallel-aligned multilayer is mainly
determined by the majority-spin electrons, which have predominantly free-electron-like sp character
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due to the position of Er above the d bands. Therefore, with increasing y gp decreases approximately
as 1/y. On the other hand, the conductivity of the antiparallel-aligned multilayer is primarily due to
the d electrons because Er falls inside the d band for this alignment. In this case, due to the interband
transitions between the s, p and d levels, the gap decreases more slowly than 1/ y2 so that GMR drops
with increasing y. This dependence is not predicted by the semiclassical treatment of conductivity,
according to which the conductivity for both the P and AP alignments is inversely proportional to y2
so that GMR is independent of y. Within the semiclassica approach the GMR values found for a
Co4/Cu, multilayer are about 400% for the CIP geometry and about 1000% for the CPP geometry.
These values are much higher than those predicted within the quantum description (Fig.33b) and
those observed experimentally (section I11). We note that the interband transitions can also contribute
to the reduction of GMR with temperature (section 10).

The predicted values of GMR for the Co/Cu and Fe/Cr multilayers are in good agreement with
experiment. For example, GMR measured in Fe/Cr multilayers at T=4.2K was found to be 79% for
relatively thin Cr layers of 0.9nm.! For the Fey/Cr, multilayer which has asimilar Cr thickness and for
the disorder parameter y=0.6eV which provides a similar saturation resistivity of 32uQcm (compared
to the experimenta resistivity of 31uQcm), the calculated result of 67% is consistent with that
measured experimentally. Another example is GMR in Co/Cu multilayers which was found to be
120% at T=4.2K.*® The thicknesses of the Co and Cr layers in these experiments were 1nm and 0.9nm
respectively and the saturation resistivity was about 10uQcm. The model predicts that the Co,/Cr,
multilayer with y=0.4eV (the saturation resistivity of 8uQcm) has GMR of 105% which is aso very
close to the experimental value. Thereis, however, an exception. The model is not able to explain the
high GMR value of 220% measured Schad et al.**™ on high-quality epitaxial Fe/Cr multilayers (see
also section 7). As was emphasized by Schad et al., the high magnitudes of GMR were only observed
for ultrathin magnetic layers, which display an enhanced density of steps at the interfaces and at very
low temperatures. The spin-dependent scattering potentials produced by the interfacial roughness are
obviously important in this case, but have not been included in the above theoretical model.

Layer-dependent conductivity o; defined by equation (17.12) provides important information
about contributions to the spin current and GMR from different layers.’®® Fig.34 shows results for a
C016/Cuy0/Cos trilayer in which the thicknesses of the Co and Cu layers, namely 3nm and 2nm
respectively, are representative of the experiments on spin vaves. The calculations were performed
assuming a bulk scattering with y=0.7eV that gives a saturation resistivity of 23uQcm and a GMR of
16% in agreement with experimental data by Egelhoff et al.®**® As is seen from Fig.34a, for the
parallel (P) configuration the local conductivity of the Co layers is much higher for the majority spins
than for the minority spins, which reflects the spin-dependent conductivity in the bulk Co (see Fig.31b
at E=Eg). The local conductivities gg, in the Cu layers are higher than those in the Co layers and are
different for different spins. Thisis because the transport properties of electrons propagating in the Cu
layer are affected strongly by the spin-dependent scattering in the adjacent Co layers. Due to the much
higher minority-spin DOS at the Co sites, electrons contributing to the conductivity in the Cu layer
scatter more strongly in the minority channel and, therefore, g, > ¢, . As is seen from the open
symbols in Fig.34a, for the antiparallel (AP) magnetizations there is an asymmetry in the local
conductivities of Cu and Co. The gc, in the local minority-spin channel is aimost the same for the AP
configuration as for the P configuration. On the other hand, the g, in the local majority-spin channel
are reduced because the majority carriers can propagate through the Cu layer and scatter in the
opposite Co layer which has a high local minority-spin DOS. As can be seen from Fig.34b, this
mechanism leads to GMR, which comes from electrons contributing to the conductivity in the Co
layers. Surprisingly, a significant contribution to GMR originates from the Cu spacer layer, the loca
magnetoconductance being highest near the interfaces. As we will see in the next section, these
enhanced values of GMR can partly be explained by electron channeling within the Cu spacer layer.
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The enhancement of magnetoconductance in the spacer layer and at the interfaces was also found for
Fe/Cr/Fe spin valves.!®®
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Fig.34  Layer-dependent conductivity (a) and magnetoconductance (b) in the Co,¢/Cu;/Cos6 (001)
spin valve in the presence of bulk scattering with (=0.7eV (symbols). The
magnetoconductance is defined as (a-07")/c*", where g~ and o are the locdl
conductivities for the P and AP configurations at the layer j. The dotted and dashed linesin
figure b show respectively the magnetoconductance for enhanced outer-boundary scattering
With yhoundary=2.86V and enhanced interface scattering with yyerace=2.8€V. After Tsymbal
and Pettifor.'®

The local contributions to GMR are very sensitive to the properties of the interfaces between the
ferromagnetic and the spacer layers. As can be seen from the dashed line in Fig.34b, increasing
disorder at the interfaces results in the strong reduction of the contribution to GMR from the spacer
layer and at the interfaces. A strong reduction of GMR was also found if a magnetically-dead
(paramagnetic) Co layer is put at the interface.®® Contrary to interface disorder, disorder at the outer-
boundaries of the spin valve reduces the contribution to GMR only from the Co layers, especially
from those layers which are close to the outer boundaries (the dotted line in Fig.34b). Thisis also the
case for paramagnetic Co layers at the outer-boundaries (not shown). The latter fact suggests that
using Ta as a buffer layer or FeMn as a pinning layer is not favorable for obtaining large values of
GMR in spin valves, because these metals have a high density of states at the Fermi level due to the d-
band contribution.

An accurate description of the band structure is crucial to elucidate the striking features in the
experimental thickness-dependent conductivity measured in-situ in NiO/Co/Cu/Co spin valves by
Bailey et al.,**? which have been described in section 12 and shown in Fig.22a. The experimental data
are the consistent with strong scattering of the conduction electrons in Cu at the interfaces with Co
due to a high density of empty Co d states at the Cu boundaries. This scattering explains both the
positive curvature of the conductance as a function of the Cu layer thickness when Cu is placed on the
NiO/Co bilayer and the conductance drop when the Co layer is placed on top of the NiO/Co/Cu
trilayer. The results of the comparison of the experimental data with the calculations are shown in
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Figs.35a,b. The positive curvature in the conductance versus Cu thickness dg, displayed in Fig.35ais
the result of the decreasing scattering of electrons in the Cu layers located far from the interface with
the bottom Co layer. The conductance drop shown in Fig.35b is a consequence of the reduction of the
local conductance in the Cu layer when the Co layer is placed on top. The conductance drop increases
within the Cu layer thickness because for the larger dc, the local conductance in the Cu layer becomes
less effected by the scattering at the bottom Co layer. Asis seen from Fig.35b, the agreement between
the experimental data and the calculation is improved if additional disorder is introduced to the top
Cu/Co interface, which is attributed to the segregation of low surface energy Cu through Co in the
experiment.**?
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Fig.35 Comparison of experimental and theoretical results for the conductance in NiO/Co/Cu(dc,)
films (&) and for the conductance drop in NiO/Co/Cu(dc,)/Co spin valves (b) as a function of
the Cu layer thickness dg,. The experimental curve in figure a has been offset by 2.3mQ™. In
figure b the agreement is improved if additional disorder is introduced to the top Cu/Co
interface that is attributed to segregation of low surface energy Cu through Co in the
experiment. After Bailey et al.™*?

The decisive role of the spin-polarized band structure for spin-dependent transport in magnetic
layered systems is supported by studying the thermoelectric power (TEP) in Co/Cu and Fe/Cr
multilayers Tsymbal et al.*® Experimental studies show that TEP is positive in Fe/Cr magnetic
multilayers.'® The magneto-thermoel ectric power (MTEP), i.e. the change in TEP associated with an
applied magnetic field, is also positive at room temperature. On the contrary, as was confirmed by
numerous experimental studies,*®® both TEP and MTEP are negative in Co/Cu multilayers. According
to the Mott formulathe TEP is related to the change in the conductivity at the Fermi energy™®’

_mk*T dlno

S= .
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(17.14)

As is seen from the middle panels in Figs.32a,b, for both parallel and antiparallel magnetizations at
the Fermi energy the conductivity of the Co/Cu multilayer increases with increasing energy whereas
the conductivity of the Fe/Cr multilayer decreases. According to the Mott formula (17.14) this
implies that the thermoel ectric power is negative in the Cu/Cu multilayers whereas it is positive in the
Fe/Cr multilayers. This theoretical prediction is in agreement with experimental observations.®%
Tsymbal et al.*® have also shown that their model accounts for the experimentally observed sign of

70

the magneto-thermoelectric power at room temperature, when the magnetizations of the consecutive
ferromagnetic layers change their alignment.

We seg, therefore, that the model for GMR, which incorporates spin-independent disorder in the
on-site atomic energy levels and a redistic spin-dependent electronic structure within a tight-binding
representation of electronic transport, provides a reliable approach for studying GMR in magnetic
multilayers and spin valves. It accounts for the experimentally observed values of GMR in Co/Cu and
Fe/Cr magnetic multilayers and shows that the effects of the electronic band structure, such as its
spin-polarization, sp-d hybridization and the contribution of the d electrons to the conductivity, are
crucia for therealistic description of conductivity and GMR in magnetic layered systems.

18. First-principle models

First-principle models for the electronic structure in conjunction with the quantum-mechanical
formulation of the electronic transport become a powerful tool to study the conductivity and GMR in
magnetic layered systems. On the one hand, the major advantage of the first-principle approach is the
possibility to treat the electronic structure in a self-consistent way taking into account the charge and
spin transfer at the interfaces. On the other hand, as we saw in the previous section, the quantum-
mechanical formulation of the transport theory is necessary for the realistic modeling of GMR.

The principal challenge to the ab-initio simulations lies in a realistic modeling of the scattering.
As was discussed in section 16, assuming that interdiffusion at the interfaces is the only mechanism
of scattering in magnetic multilayers results in highly overestimated values of GMR. A reliable
approach must include other contributions to the resistivity, such as from intrinsic structural defects
which were considered in the previous section.

Unfortunately, proper first-principle treatment of al the possible mechanisms of scattering in
layered structures is very complicated. Redlizing this, Butler et al.*®® use a simplified approach.
Arguing that in realistic GMR systems scattering comes from several sources such asimpurities, grain
boundaries, vacancies, voids, and phonons, they approximate these scattering processes by a
phenomenological local scattering rate, which could be in general spin-dependent. They use the
Kubo-Greenwood formula for the conductivity in which they average the two Green's functions
independently, thereby neglecting the vertex corrections. They assume that the effect of this averaging
is that each atomic potential acquires an imaginary term that describes the scattering rate in its
vicinity.

Butler et al. introduce a non-local site-dependent conductivity o which determines the
electrical current at site (layer) i, j;, related to the local electric field at site (layer) j, &;,

iF=SYore", (18.1)
where it is assumed that j; is the average of the current density over the atomic cell at that site and the
local field &; is a constant over each atomic cell. If the electric field is applied parallel to the layers
(CIP geometry) the local fields are uniform by symmetry and equal to the average applied field. This
allows obtaining the overall conductivity by summating over all layers according to

1
[t uv
gt = . Zd‘aij , (18.2)

where d; is the thickness of layer i and d is the total film thickness.
The non-local conductivity can be found according to the Kubo-Greenwood formula

ne?
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where the integration is performed over the atomic cells at sitesi and j, Q; and Q; being the volumes
of the corresponding cells. The angular brackets denote the configurational average, which is
introduced as a phenomenological imaginary part of the self-energy in the Green’s function G(r,r') .
In order to calculate G(r,r') Butler et al. use the KKR formalism, which explicitly constructs the

Green’s function in terms of the local solutions of the Schrodinger equation and the scattering path
operator of multiple scattering theory (see ref.188 and references therein). These are determined by
the atomic potentials which are obtained self-consistently by using the local spin density
approximation to density functional theory.

The non-local layer-dependent-conductivity is useful for a better understanding of the mechanism
of magnetoresistance. An example of the calculation of the non-local conductivity for a Coz/Cu;o/Coy
trilayer'®® is shown in Fig.36. In this calculation the phenomenological life-times are constrained to
provide typical experimental resistivities for sputtered Cu and Co films. It is assumed that the
scattering rate for the minority carriers in the bulk Co layers is 7 times that for the mgjority carries,
reflecting the difference in the density of states in bulk Co. Due to intermixing at the interfaces the
scattering rate of the minority spins at the interfacia layer is set 12 times that for the minority spins,
the factor of 12 being based on coherent potential approximation calculations of the resistivity due to
Cu impurities in Co and Co impurities in Cu. In addition, strong spin-independent scattering at the
outer boundaries of the trilayer is included.
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Fig.36  Non-local layer-dependent conductivities (in units 10%s’=1113Q7cm™) for the
Co,/Cuy/Co; (111) trilayer: (a) majority channel for the paralel (P) alignment of
magnetizations, (b) minority channel for the P alignment, (c) spin channel, which is locally
majority in the left side Co layer, for the antiparalel (AP) alignment, and (d) giant
magnetoconductance, which is defined as the difference between the non-local
conductivities for the P and AP alignments. The atomic layers are labeled by indices i and
j. After Butler et al.*®

As is obvious from Fig.36a the conductivity is strongly non-local, which is reflected in large
values of o for i# | especialy within the Cu layers due to a long mean free path in Cu. A
comparison of Fig.36a with Fig.36b shows that the conductivities are “more loca” for the minority
carriers than for the majority carriersin Co because of a higher DOS and consequently a shorter mean
free path for the former. As is seen from Figs.36a, b, and c, for both parallel and antiparallel
alignments the conductivities have a tendency to be confined within the Cu or Co layers displaying a
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decrease at the interfaces. This “difficulty” in passing between layers results from the significant
probability for reflection at the interfaces as a consequence of the potential steps created by the
potential mismatch between Co and Cu. As is evident from Fig.36d, a large contribution to GMR
comes from the Cu spacer layer, which is a consequence of electron channeling and will be discussed
below. Another contribution to GMR comes from the Co layers. This contribution arises from
electrons that are accelerated in one Co layer, travel through the Cu layer to the other Co layer, and
contribute to the current there. These show up in Fig.36d as the contributions in the near and far
corners, which correspond to i and j being in the Co layers on opposite sides of the Cu spacer layer.
The layer-dependent conductivities (not shown), which are caculated from the non-local
conductivities by o, = Zj o, , are quaitatively similar to those calculated within the tight-binding

mode!*®® (see Fig.34).

The presence of potential steps at the interfaces results in a contribution to GMR, which is
distinct from spin-dependent scattering. This contribution originates from electron channeling as has
been demonstrated within free-electron models. %% Channeling can occur for the current parallel
to the planes if a large portion of the electrons in a layer is specularly reflected from both its
interfaces. If the scattering rate in that layer is lower than it is in neighboring layers, the reflected
electronsin that layer see alower effective scattering rate than they would in the absence of reflection.
In magnetic multilayers, channeling contributes to GMR due to the electrons with parallel momenta
which are strongly reflected for one spin, but not the other. In this case, channeling does not occur for
electrons of either spin in the antiferromagnetic alignment because both transmit through one or the
other interface. On the other hand, for the ferromagnetic alignment, electrons of one spin are confined
to the layer, and if that layer has a lower scattering rate, these electrons cause a short circuit effect,
thereby giving a contribution to GMR.2#°

Using first-principle calculations Butler et al.® have shown that channeling can contribute to
GMR in Co/Cu/Co spin valves. The magjority-spin electrons in Co have a lower Fermi momentum
than electrons in Cu. This leads to the tota internal reflection of those electrons whose momentum
paralld to the interface exceeds the Fermi momentum of Co. These reflected electrons are, therefore,
confined to the Cu layers, and, if the scattering rates are significantly lower in the Cu that in the Co,
they give a large contribution to the majority current and a large contribution to GMR. This
contribution to GMR shows up in Fig.36d as a contribution to Agj; that is confined to the region near
the center of theij-plane where both i and j label Cu atomic layers.

The importance of channelling is nicely illustrated by Stiles'® who calculated the transmission
probabilities across various interfaces. In this calculation the time-independent scattering states are
determined by breaking space up into layers.®* The potential is computed for each layer from a bulk
electronic structure calculation using the linearized-augmented-plane-wave method. Generalized
Bloch states for a layer are computed from the potentia in the layer. Generalized Bloch states are
related to Bloch states by alowing the component of the wave vector normal to the interface to be
complex. They form a complete set of states, which includes the usual Bloch states and all evanescent
states, and consequently describe any time-independent solution of the Schrodinger equation for
arbitrary boundary conditions. The generalized Bloch states for the two materials are matched
together across the interface to construct the electron scattering states, giving the reflection and
transmission amplitudes directly.

Fig.37 shows the results of the calculations for transmission across Cu/Co(001) interface.*®® The
majority Fermi surfacein Co issimilar to the Fermi surface in Cu, but is smaller. This similarity leads
to the amost complete transmission of the majority-spin electrons from Co into Cu (the left bottom
panel in Fig.37). The smaller size of the majority Co Fermi surface leads to the complete reflection
for the states in Cu with the largest momenta parallel to the interface (the right top panel in Fig.37).
These electrons contribute to channeling within the Cu layer in the Co/Cu/Co trilayer when
magnetizations of the Co layers are paralle.’® Although the transmission of the minority-spin
electrons is not simply characterized (due to the complicated nature of the minority Fermi surfacesin

ij
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Co), it is seen from the right top panel in Fig.37 that the same Cu states transmit much better into the
minority Co states. Channeling by these electrons can give, therefore, a contribution to GMR if the
scattering rate in Cu is much smaller thanitisin Co.

Transmission probability
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Fig.37  Spin-dependent transmission probabilities for the Co/Cu(001) interface. The transmission
probabilities are shown for various points on the Fermi surface projected onto the interface
Brillouin zone. For minority Co, each sheet of the Fermi surface is shown in a fraction of
the Brillouin zone. After Stiles.’®

The degree of channeling which is observed in real experiments depends strongly on the detailed
nature of the interfaces between the Co and Cu layers. Interfacial roughness can reduce or eliminate
the contribution of channeling to GMR.X®® As we have seen in the previous section, strong disorder
(or a magnetically-dead Co layer) at the interfaces aso results in a sizable reduction of the
contribution to GMR from the spacer layer (the dashed line in Fig.34b). Evidence of channelingin a
Fe/Au(001) multilayer is found in experiments by Dekadjevi et al.,'®? which is consistent with the
theoretical prediction of strong reflection of electrons propagating in Au from Fe/Au interfaces.*®

Using the model developed in ref.188, Butler et al.'®® have performed calculations of the
conductance and magnetoconductance in Ta/Co/Cu/Co/FeMn/Ta spins valves and compared results
with experimentally measured values as a function of the Co layer thickness. In the calculations, the
conductance of the Ta and FeMn layers is neglected because their resistivities are very high, greater
that 100uQcm. The interface between the Co and the Ta and between the Co and the FeMn is
modeled by an atomic layer of Co with avery high scattering rate. The scattering rates within the Co
and Cu layers are adjusted phenomenologically to be consistent with experimentally-measured
resistivities of thick films. Various models for scattering are considered, such as spin-independent
scattering, bulk scattering with different spin asymmetry in the scattering rates, interfacial spin-
dependent scattering and both bulk and interface scattering. Butler et al. find that the
magnetoconductance and its dependence on the Co layer thickness are consistent with calculations
that include bulk spin-dependent scattering within the Co layers and some channeling of electronsin
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the Cu layer. They conclude that it is not necessary to invoke additional diffuse spin-dependent
scattering at the interfaces to explain the experimental data. Thisis due to the strong spin-dependence
of the transmission and reflection coefficients at the interfaces, which follow from the electronic band
structures of Co and Cu. This conclusion is consistent with the prediction of the tight-binding model
by Tsymbal and Pettifor.1"*

All the models considered above assume electrical transport in parallel within the two spin-
conduction channels, the total conductivity being the sum of the spin conductivities. Strictly speaking
this is not the case due to the spin-orbit interaction. The spin-orbit interaction is a relativistic effect,
which couples the electronic and the spin degrees of freedom and therefore makes the two-current
model inapplicable. Although the spin-orbit interaction is relatively small in the transition 3d metals
and does not effect strongly the electronic structure of these metals, it can affect transport properties
of bulk aloys, for example, avoiding the short circuits that can arise in either spin channel (e.g.,
ref.174). It is questionable, however, whether this effect is important for the description of GMR in
3d-metal multilayers, because the short circuit effects, which appear if the intermixing at the
interfaces is the only mechanism of scattering (see section 16), are avoided due to structural disorder
and phonon scattering in real systems. The spin-orbit interaction might be important when heavy
elements like gold or platinum are used as a spacer layer or introduced as impurities.
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Fig.38  Resitivity (a) and GMR (b) of a disorder-free Coa/Cu(dc,)/Co3(001) trilayer embedded in
semiinfinite Cu(001) substrates for parallel (P) and antiparallel (AP) magnetizations as a
function of the Cu layer thickness dc, and GMR (c) of a Cos/Co;.Cu,/CoxCuy.,/Cuy/
Co,Cu;.,/Co,.xCu,/Cos(001) trilayer versus concentration x of interdiffused Co and Cu at
the Co/Cu interfaces. After Blaaset al.***

The spin-orbit coupling is explicitly taken into account in a fully-relativistic calculation of GMR
in Co/Cu multilayers by Blaas et al.® They use a screened KKR method adapted to layered systems
and a single-site coherent-potential approximation (CPA) to incorporate the effect of intermixing at
the interfaces on electrical transport. Within their approach a magnetic multilayer is embedded
between two semiinfinite substrates, which makes the system non-periodic in the direction
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perpendicular to the planes. The electrical conductivity of the multilayer is determined by summing
the non-local conductivity g only over the atomic layers of the imbedded system in accordance to
equation (18.2). In this formulation the conductive substrates play the role of reservoirs, to where an
electron will eventualy leak out from the layered structure. Mathematically this implies that the
Green’s function, which describes the electronic properties of the multilayer and enters expression
(18.3) for the non-local conductivity, has a self-energy contribution due to the semiinfinite substrates.
Even when the multilayer is free of defects it exhibits resistivity, which is determined by the
imaginary part of this self-energy. In this formulation the resistivity of the multilayer depends strongly
on the electronic structure of the substrates and their coupling with the imbedded system. The
resistivity comes therefore from the boundary conditions and decreases with the increasing thickness
of the disorder-free embedded film.*%

Fig.38a shows the resuilts of Blaas et al.’®* for the resistivity of a Cog/Cu(dc,)/Cos(001) trilayer
embedded in semiinfinite Cu(001) substrates for parallel (P) and antiparallel (AP) magnetizations as a
function of the Cu layer thickness dc,. No disorder was assumed in this calculation and the values of
resistivity are entirely determined by the coupling with the Cu substrates. Asis seen from Fig.38b, the
magnitude of GMR decreases with increasing Cu layer thickness ranging from about 20% to about
2%. These values increase within increasing Co layer thicknesses (not shown) as a result of the
decreasing influence of the outer boundaries. Blaas et al. have aso investigated the effect of
intermixing within two monolayers of Co and Cu attached to the Co/Cu interfaces. Fig.38c shows the
results of their calculation for a Cos/C0o1.«Cuy/CoxCuj-«/Cu7/CoxCus-«/C01.xCuy/Cog(001) trilayer as a
function of concentration x within the intermixed regions. As is seen from the figure, GMR increases
with x, which reflects increasing spin-dependent scattering at the interfaces. Unlike refs.168, 170, 171
and 172, Blaas et al.'® find reasonable values of GMR due to the scattering at the intermixed
interfaces. This is the consequence of the coupling to the attached Cu substrates, which leads to the
broadening of electronic states of the Co/Cu/Co trilayer, thereby avoiding a short circuit current
within the majority spin channel. It is not clear, however, what physical mechanism of scattering
could provide the same broadening of states in the isolated multilayer as in the imbedded multilayer,
in order to correlate the results of such computations with experiments. We also note that the increase
in GMR as a function of the function contradicts the experiments of Suzuki and Taga’ who found
that the intermixing at the interfaces is detrimental for GMR in Co/Cu multilayers. This is probably
the result of misaligned magnetic moments and increasing structural disorder at the interfaces due to
intermixing, which are not taken into account in the calculations of Blaas et al.’* Unfortunately,
Blass et al. do not discuss the effect of spin-orbit interaction, which makes their calculations different
from the non-relativistic formulations of the transport theory. The importance of the spin-orbit
interaction in GMR of the 3d-metal magnetic multilayers remains elusive.

Spin mixing in the conductance can occur not only due to the spin-orbit coupling but also due to
misaligned magnetic moments, which are present in magnetic layered systems due to interdiffusion at
the interfaces. As was discussed in section 8, experiments™ find that at room temperature there is a
substantial reduction in the magnetization of permalloy near the interfaces with copper, which is
equivalent to a magnetically-dead layer of 0.2nm thickness. In order to investigate this effect, Oparin
et al.® have performed calculations of the magnetic structure of the intermixed NigoFex/Cu
interfaces. They imbedded four atomic planes of Ni(111) in Cu and used the diffusion equation to
calculate the configuration profile as a function of time. Assuming that Cu, Ni, and Fe have similar
diffusion constants they replaced Ni by Fe at random in the Cu/Ni/Cu structure to arrive at the
Cu/NigoFex/Cu structure. For a given atomic configuration the magnetic structure was calculated
using the local scalable multiple scattering approach to local spin-density theory.* Fig.39 shows the
ground state magnetic configuration of the four layers of permalloy in a copper matrix after
interdiffusion has occurred. The Fe moments are about the same size as in pure NigFe, but their
directions have become disordered. These misoriented moments can contribute to spin mixing and
spin-flip scattering. Furthermore, the Ni moments are much smaller than for pure bulk NigoFex so the
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majority channel does not match nearly so well to Cu. Oparin et al.% conclude that the canting of the
Fe moments and a reduction of the magnitude of the Ni moments at the interface is responsible for the
measured ‘‘magnetically dead”’ layers™ and result in the strong reduction of GMR. Butler et al.X%
found that placing a small amount of Co at the interfaces can dramatically increase the collinearity.
The Fe moments become in much better alignment and the Ni moments become closer to their bulk
values. This Co-induced improvement in collinearity is consistent with the enhancement of GMR
obtained in experiments by Parkin’’ (see also Fig.15).

Fig39 Atomic postions (in A) and site magnetic moments (in arb.units) for a magnetic
configuration of four atomic planes of NigFey interdiffused into Cu. The small filled
circles represent Ni, the small open circles represent Cu, and the large open circles
represent Fe. All Fe moments, as well as Ni moments greater than 0.15 p and Cu moments
larger than 0.015 g are depicted to the right-hand side with the indicated multiplying
factors. After Oparin et al.%

VI. CPPGMR

Since the successful demonstration of current-perpendicular-to-the-plane (CPP) magneto-
resistance by Pratt et al.,*® this geometry has become the subject of much interest for studying GMR.
The technique of using superconducting contacts' produces uniform current density and has the
advantage of relatively simple sample preparation. Unfortunately, measurements can be performed
only at low temperatures. Other techniques, which avoid this problem, are based on lithographically
defined pillar structures™ on growing the magnetic multilayers on prestructured (grooved)
substrates'®*® (Fig.3a), or on the electrodeposition of multilayer nanowires into the pores of an
insulating polymer matrix*"*® (Fig.3b). These techniques have, however, disadvantages such as the
difficulty to control the AP state, non-uniform currents in the lithographed samples, and the stronger
disorder in nanowires. Several reviews®?>2% hayve been published which are devoted to various
theoretical and experimental aspects of CPP GMR. In this section, we outline some results of these
studies, referring the reader to the above reviews for a detailed discussion. We will, in particular,
address novel issues, which have emerged recently. These have important consegquences for our
understanding of the physics of CPP GMR, as well as for interpreting the experimental data.

Most experiments on CPP GMR are interpreted in terms of the series-resistor model, which was
introduced in section 3. The series-resistor model is a better approximation for the CPP geometry than
for the CIP geometry. This can be qualitatively understood by the following arguments. In the limit
when the elastic mean free path A is short compared to the layer thicknesses, each layer can be
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considered as a separate resistor for the current flowing perpendicular to the planes of the multilayer.
In the opposite limit of a very long A the probability of scattering is the sum of the scattering
probabilities within each layer. This implies that the conductivity is “self-averaging”, leading to, like
in the first case, resistors in series. This was first recognized by Zhang and Levy** who have shown
that for a multilayer which is described by a free-electron model with no potentia steps at the
interfaces, the conductivity of the multilayer for each spin channel can be expressed by the simple
formula

I 71_ne2 1 '
Ocop —E[{J (z)dzH _?EE'[A(Z)dZE , (VI.1)

where the local isotropic spin-dependent conductivity o(2) is given by expression (13.15) and A(2) is
the local spin-dependent scattering rate. This formula is identical to that within the series-resistor
model, in which the resistivity of the multilayer is determined by resistivities of the individual layers
o and their thicknesses d;

21 _1
Peer _I!p(z)dZ—tZd\pi ’ (V|.2)

where i is an index of the layer. According to Zhang and Levy™ and Camblong et al.*® the mean-free

path is not arelevant scale for CPP GMR. Indeed, athough the layer- and spin-dependent resistivities

o = mAz, = kZFA in formula (V1.2) depend on the mean free paths A;, the CPP GMR is determined
ne® ne°A\

only by the layer thicknesses. For example, as we saw in section 3, the resistor model predicts that

GMR varies as 1/d?, for large spacer layer thicknesses dyw. Thisisin contrast to the CIP geometry,

in which for large dyw GMR scales exponentidly, i.e. as exp(—dnw/Anw), with the mean free path in
the non-magnetic spacer layer Anm (See section 12). We stress, however, that the conclusion about the
irrelevance of the mean free path and the applicability of the series-resistor model to CPP GMR is
inherent to the free-electron model with no potentia steps at the interfaces. As we will see below, the
mean free path can play an important role in CPP GMR.

The quantity which is measured in the CPP geometry is the conductance per unit area, or
equivaently its inverse, the resistance AR, where A is the area through which the current flows. The
CPP GMR is defined by the ratio (ARap—ARp)/AR=AAR/(ARA—AAR). These quantities can be
expressed in terms of the series-resistor model, which was elaborated by Lee et al.*’ to include spin-
dependent bulk resistivities, spin-dependent interface resistances, and contact resistances due to
superconducting leads. According to their model the resistances ARap and AAR of the multilayer with
the number of bilayers N are given by

AR = 2AR ey +2NpNMdNM + Np;M dFM + 2NAR;M/NM ) (V1.3)

AAR=N Z(Bp:M dey + ZVAR;M INM )2 I ARy . (V1.4
They are determined by six parameters, namely the resistance of the superconductor/ferromagnet
contact ARgrm, the resistivity of the nonmagnetic layer pnw, the renormalized resistivity of the
ferromagnetic  layer P:M =Py IQ-B?), the renormalized  interface  resistance
AR;M = ARG, /(L= y?), and the scattering spin-asymmetry parameters for the bulk, 8, and for
the interface, y. Parameter S is related to the spin asymmetry of the bulk scattering within the
ferromagnetic layer ap, = Piy / Piw » Which was introduced in section 3, by the expression
an, =@+ B)/(1-B) . Parameter yis related to the spin asymmetry of the interface scattering at the
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FM/NM interfaces Qe nu = Rew/w / Riwae PY the expression apy,,wv =@+y)/(A-y). The

values of ARgem, Pnv, and pem can be determined independently from experiments on SFM(dew)/S,
SINM(dnm)/Strilayers.  ARsem can be found from the ordinate intercept of a linear fit to AR versus
drm for aseries of SFM(dry)/Strilayers. The resistivities pnw, and pem are determined by the slope of
linear-fit curves ‘resistance versus thickness'. This reduces the number of adjustable parameters to

only three, namely AR,y » Band y. These parameters can be found experimentally®® by measuring

ARap and AAR for samples with varying dey and dym and using equations (V1.3) and (V1.4).

Table 1 summarizes the results obtained for Co/Cu multilayers by different groups using various
techniques. The first and second columns display the parameters obtained from experiments on
multilayers fabricated by sputtering® and MBE'® using superconducting contacts. The third column
shows the parameters derived from fitting the experimental data on multilayers grown on grooved
substrates.®® The fourth and fifth columns display the parameters obtained from measurements on
multilayered nanowires prepared by electrodeposition.?®?® As is seen from the table, different
fabrication techniques result in quite different bulk resistivities of Cu and Co in the Co/Cu multilayers
reflecting a variation in the defect density. This leads to a sizable spread in the values of the scattering
spin-asymmetry parameters 8 and y. However, despite this spread, it is evident from Table 1 that the
spin asymmetry of scattering at the interface, y; is always higher than the spin asymmetry of scattering
in bulk Co, 3, whatever the method of preparation of the Co/Cu multilayersis. This fact demonstrates
the decisive role of the spin-dependent interface scattering for CPP GMR in the Co/Cu multilayers.
Indeed, according to formula (V1.4), the contribution from the bulk resistance becomes equal to the

contribution from the interface resistance when the FM layer thicknessis d,, = 2yAR:.M /M /ﬁp;M .
Using the parameters from ref.24 (the first column in Tablel) this gives dem~20nm. We seeg,
therefore, that for FM layer thicknesses of a few nm the dominant contribution to GMR comes from
the spin-dependent interface resistance.

TABLE1

Spin-dependent scattering parameters obtained from CPP GMR experiments on Cu/Co multilayers at
low temperatures using the series-resistor model. Measurements are performed by various techniques
as indicated in the table. The parameters are determined from the resistances at the saturation field
and the field of the local resistance maximum after saturation.

ref.24 ref.199 ref.96 ref.200 ref.201
multilayers multilayers  grooved substr. nanowires nanowires
sputtering MBE MBE electrodep. electrodep.
4.2K 4.2K 4.2K 77K 20K
Pey (HQcm) 0.6+0.1 1.3+0.3 0.39+0.07 31 1.3-33
Peo (MQCm) 6.6£0.5 3.0£0.6 4.240.7 18£2 5157
B 0.38+0.06 0.48+0.04 0.17+0.03 0.36+0.04 0.46+0.05
ARG, ey (FQM) 0.38+0.03 0.430.04 0.25:0.04 0.30+0.05 0.3-1.1
y 0.71+0.05 0.71+0.02 0.45+0.09 0.85+0.10 0.55+0.07

It is known that there are two contributions to the interface resistance:?* the first one comes from

the potential step between the ferromagnetic and nonmagnetic metal layers and the second one results
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from interface disorder. Zhang and Levy?® have shown that these two contributions are not additive
and that diffuse scattering by the interface disorder may either enhance or reduce the interface
resistance, the latter occurring for large reflection coefficients. These free-electron considerations in
the presence of the intrinsic multilayer potential®®>?%® contain unknown parameters such as the spin-
dependent potential steps. The interface resistance can, however, be modeled from first principles.
This has been shown by Schep et al.?* who calculated a Co/Cu interface resistance assuming that
there is no coherent transmission between adjacent interfaces. The latter approximation implies
complete diffuse scattering in the bulk and justifies the series-resistor model. For the (111)-oriented

multilayer they found the values of the interface resistance, AR;O,Cu =0.44fQm? and the spin

asymmetry parameter, y=0.54, which are in reasonable agreement with the experimental vaues
presented in Table 1. Schep et al. concluded that the experimentally observed interface resistance in
the Co/Cu multilayers can be explained largely in terms of specular scattering at the Co/Cu interfaces.
A similar conclusion was arrived at by Chen et al.,*® who used a multiband tight-binding model to
calculate the Co/Cu interface resistance and the scattering spin-asymmetry parameter yin the presence
of the spin-dependent or spin-independent impurity potential at the interfaces. The importance of
specular scattering at the Co/Cu interface was also confirmed in calculations by Stiles and Penn,®®®
who argued that the measured interface resistances might not be dominated by defect scattering asis
often assumed.

The interpretation of the experimental data within the series-resistor model assumes that the

interfaces can be uniquely described using two parameters, AR*;M,NM and y, independent of the layer

thickness separating them. Schep et al.”** found, however, that the Co/Cu interface resistance is
strongly reduced if the bulk propagation is balistic rather than diffusive. This implies that the
interface resistance can be different for thin and thick layers between the interfaces making, in
general, the series resistor-model inapplicable.

The fact that the interface resistance can be dependent on the layer thickness has been explicitly
demonstrated by mode! calculations of Tsymbal and Pettifor.2” They used a simple single-band tight-
binding model and calculated the resistance of a disordered metal layer placed between two perfect
leads using the Kubo formula and the recursive approach, as is described in section 14. Fig. 40a
demonstrates the results of these computations. The open squares show the resistance of the metal-1
layer, which is characterized by the on-site atomic energy E;=3 (in units of the hopping integral), asa
function of its thickness d when it is placed between perfect leads of the same metal. The linear
variation seen is evidence of the Ohmic regime of conductance, the slope of the curve determining the
resistivity of disordered metal 1 and the ordinate intercept determining the resistance AR, of disorder-
free metal 1. When alead of metal 2 with a different on-site atomic energy E,=5 is attached to the
disordered metal 1 layer, an interface resistance is introduced due to the potential step at this interface.
Asis seen from the open circles in Fig.40a, this shifts the curve up, the shape of the curve remaining
linear with the same slope. The magnitude of this shift equals to ARy +(AR1+ARy)/2—-ARy, where ARy
is the interface resistance and AR; and AR, are the resistances of the infinite disorder-free leads of
metal 1 and metal 2 respectively.?® Attaching a second lead of metal 2 to the disordered layer of
metal 1 does not, however, result in arigid upward shift of the curve as it would be expected due to
the additional interface resistance within the series-resistor model. As is evident from the full circles
in Fig.40a, the resistance becomes a non-linear function of the metal thickness. This behavior is a
consequence of the quantum-well bound states, which are created in the metal 1 layer, when it is
placed between the leads of a higher electronic potential. These bound states reduce the number of
conducting channels in this layer, which leads to the reduced interface resistance and the enhanced
effective resistivity of the metal. With increasing thickness of the disordered metal layer, defect
scattering redistributes the current-carrying electrons between the various conducting channels,
thereby enhancing the interface resistance, which is plotted in Fig.40b. The characteristic length scale
for this change is the mean free path, which is estimated as A = 25a in this calculation. When the
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layer thickness becomes much larger than the mean free path the series-resistor behavior is recovered,
which is reflected in alinear variation of the resistance at d>100a in Fig.40a and the saturation of the
interface resistance in Fig.40b. An interface resistance that depends on the layer thickness is a feature
of perpendicular transport, which lies beyond the series-resistor model and makes the mean free path
an important parameter for CPP GMR. We note that noticeable oscillations in the resistance at very
small thicknesses, which are seen from the full circles in Fig.40, are reminiscent of the oscillations in
the ballistic regime of conduction.'®*
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Fig40 (a): Resistance of a disordered metal-1 layer versus its thickness d (in units of the lattice
parameter a) when it is placed between the perfect leads of the same metal 1 (open squares),
between the left lead of metal 2 and the right lead of metal 1 (open circles), and between the
leads of metal 2 (full circles). (b): Layer-thickness-dependent interface resistance, which is
calculated by teking the difference between the curves corresponding to one and two
interfaces in figure (a) and, then, by substrating the average resistance, (AR;+AR,)/2, of the
infinite disorder-free leads of metal 1 and metal 2. In the calculations the metals differ by the
on-site atomic energies which are equal to E;=3 and E,=5 respectively. The energies are
measured in units of the hopping integral relative to the Fermi energy which lies at zero. Bulk
disorder is introduced as a random variation of the on-site atomic energies with a uniform
distribution of standard deviation y=0.5. The calculated conductance is averaged over 80
random configurations. The size of the system is extended to infinity in the direction
perpendicular to the current by introducing a unit cell of 16x16 atoms in the transverse
direction and imposing periodic boundary conditions. After Tsymbal and Pettifor.2”

A redlistic band structure of the multilayer predicts a more diverse pattern of behavior for the
|ayer-thickness-dependent interface resistance. At asmall layer thickness separating two interfaces the
interface resistance can be enhanced or reduced depending on the band structure of adjacent metals.
This was illustrated by Tsymbal,”® who calculated the resistance and CPP GMR for the
Co40/Cu(d)/Coyg trilayer versus Cu layer thickness d. As is evident from Fig.41a, the resistance of the
majority-spin electrons within the P configuration (the open circles) and the resistance for the AP

81



configuration (the diamonds) show pronounced non-linearity as a function of the Cu thickness. For
comparison the solid lines in Fig.41 show the resistance of bulk Cu, which was offset to fit the
respective resistances of the Coy0/Cu(d)/Coyg trilayer at large Cu thicknesses. A sizeable deviation of
the symbols from the solid lines is seen in Fig.2a at small d, which implies that the Co/Cu interface
resistance depends on on the Cu layer thickness. This difference has opposite sign for the P and AP
configurations. In the case of P magnetizations, the interface resistance increases with the Cu layer
thickness for both the majority- and minority-spin electrons (the open circles and squares in Fig.41a),
which is due to the bound states within the Cu layer placed between the two Co layers. It isinteresting
that the minority electrons display a less-pronounced departure from linearity. This is due to the effect
of disorder, which intermixes the closely lying Co d bands, thereby smearing out the potential well.
Indeed, a separate calculation, in which no disorder was assumed within the Co layers, demonstrates
much stronger non-linearity for the minority Co,¢/Cu(d)/Coyo resistance (not shown). The situation
is, however, different for the AP configuration. As is evident from the diamonds in Fig.41a, the
interface resistance decreases with the Cu layer thickness. The effect arises from the very distinct
electronic structures of the majority and minority bands in Co. In this case, scattering by disorder in
the Cu layer assists the electrons which have passed the first Co/Cu interface to be transmitted across
the second Cu/Co interface, reducing the interface resistance with increasing the Cu layer thickness.
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Fig4l Resistance (8) and GMR (b) of the Coyo/Cu(d)/Coy trilayer as a function of the Cu layer
thickness d, and resistance (c) and GMR (d) of the (Cuy¢/Co,0)y multilayer as a function of the
number of Co/Cu bilayers N. Open symbols show the resistance per spin of the majority
(circles) and minority (squares) electrons for the P configuration and for the AP configuration
(diamonds). In panel (a) the full symbols show the total resistance for the P (circles) and AP
(squares) configurations and the solid lines display the bulk Cu resistance which was offset to
fit the respective resistances for the trilayer at large Cu thicknesses. The disorder parameter is
set equal to y=0.6eV, which gives a bulk resistivity of 4.6uQcm for Cu and 14.3uQcm for
Co. Solid lines in panels (c) and (d) display a linear fit of the resistances and the GMR
calculated from this fit. After Tsymbal 2%
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The dependence of the interface resistance on the layer thickness makes the Co/Cu interface
resistance different for the P and AP configurations. This effects the variation of the resistance and
GMR as afunction of the number of the Co/Cu bilayers N in the (Cu/Co)y multilayer, which is shown
in Figs.41c,d.*® As is evident from the fit displayed in Fig.4a by the solid lines, the P and AP
resistances increase in anearly linear fashion as afunction of N. Thisis exactly what one could expect
from the series-resistor model. The redlity is, however, more complex. The extrapolation of the linear
fit to zero N results in different resistances for the P and AP magnetizations. For the P configuration
we obtain 3.5fQm?, which is by a factor of two higher than the value for the AP configuration of
1.8fQm?. This enhanced value is a consequence of the thickness-dependent interface resistance. For
the majority-spin electrons, which predominantly contribute to the resistance within the P
configuration, the interface resistance is reduced for the smal number of the Co/Cu bilayers.
Although the thickness-dependent interface resistance saturates very quickly (almost within two-three
repeats), it results in the offset of the resistance-curve origin between the P and AP configurations, as
can be seen from Fig.41c. This leads to a very slow saturation in the CPP GMR, i.e. O UN, which is
evident from Fig.41d.

The fact that the interface resistance depends on the proximity of the other interfaces and bulk
scattering rates is in agreement with the prediction of Butler et al.,® who solved the Boltzmann
equation in the CPP geometry including the scattering-in term and assuming that the electronic
structure is different for different layers. They found that the interface resistance is affected by the
exponential terms in the electrochemical potential that decays at a rate comparable to the mean free
path. In the limit of uniform band structure they recovered the solution of the series-resistor model.
The dependence of the interface resistance on the number of interfaces was found in recent
calculations by Xia et al.?'® They modeled interface disorder using large lateral supercells within the
TB-LMTO method,** which allowed them to treat specular and diffuse scattering on an equal
footing. They demonstrated that in Co/Cu multilayers with 10ML layer thicknesses and intermixed
interfaces the Co/Cu interface resistance decreases for both the majority- and minority-spin electrons
with increasing number of bilayers. Very recently Shpiro and Levy®*? have investigated the form of
the chemical potential in the presence of the diffuse and specular scattering at the interface between
two semiinfinite metals by solving the linearized Boltzmann equation within a free-electron model
assuming a potential step at the interface. They found that the interface resistance deduced from the
voltage drop measured far from the interface is different from the interface resistance that would be
obtained by measuring the voltage drop directly at the interface. They concluded that the interface
resistance is dependent on the resistance in the adjacent layers and that one has to re-examine the
parameters obtained from the analysis of CPP transport data on metallic multilayers that have been
modeled by the series-resistor model.

Experimental evidence for the breaking down of the series-resistor model and the relevance of
the mean free path to CPP GMR have recently been presented by Bozec et al.**® They carried out an
experimental study of the magnetoresistance R(H) in the CPP geometry for two types of magnetic
multilayers, interleaved and separated, that differ only in the ordering of the magnetic layers:
[Co(1nm)/Cu(20nm)/Co(6nm)/Cu(20nm)]n and [Co(1nm)/Cu(20nm)]nCo(6nm)/Cu(20nm)]. Due to
the different thicknesses of the Co layers, 1nm and 6nm respectively, these layers had different
coercivities which resulted in the magnetization layer switching at different magnetic fields. The
series resistor model predicts that in the CPP mode R(H) is independent of the ordering of the layers.
Nevertheless, as is seen from Fig.42a, the measured R(H) curves are found to be completely different
for the two cases. The maximum value of R(H) is much larger for the interleaved configuration than
for the separated configuration. It was also found that the difference in GMR between the interleaved
and separated configurations increases with increasing number of repeats N.

Calculations based on a redlistic band structure and the Kubo formula show that the results of
these experiments are the consequence of a long mean free path.2*® Fig.42b displays the calculated
resistance versus thickness of the Co/Cu multilayer: the rightmost points in this figure determine the
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resistance of the full (Coyo/Cuyg)s Structure. Asis seen, the result of the calculations is in agreement
with the experiments: GMR for the interleaved configuration is higher than GMR for the separated
configuration. There are a few important points, which follow from this modeling. (i) With increasing
disorder in the Co/Cu multilayer the difference in GMR between the interleaved and separated
configurations becomes smaller and eventually disappears when the mean free path becomes much
less than the layer thicknesses. This is due to the fact that in this limit the series resistor model
becomes justified. (ii) There is no difference in GMR between the interleaved and separated
configurations within a single band tight-binding model with spin- and layer-dependent disorder,
which determines different scattering rates for the majority- and minority-spin channels and for
various layers. This is in agreement with the models, which are based on a free-electron band
structure for all layers.* (iii) The calculation reproduces the important feature of the experiments,
namely, an increase in the difference GMR between the interleaved and separated configurations with
increasing the number of the Co/Cu bilayers.
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Fig42 (a): Experimental magnetic-field dependence of GMR for the interleaved
[Co(1nm)/Cu(20nm)/Co(6nm)/Cu(20nm)], multilayer (squares) and the separated
[Co(1nm)/Cu(20nm)] ,Co(6nm)/Cu(20nm)], multilayer (circles). (b): Calculated resistance
of the Co/Cu multilayer which contains 10ML of Co and 10ML of Cu within each layer as
a function of the total thickness of the multilayer for the parallel magnetizations (open
circles) and for the antiparallel magnetizations (full symbols) within the interleaved
(squares) and separated (circles) configurations. After Bozec et al. *

These results have been very recently confirmed by Kudrnovsky et al.,>** who used an efficient
method for the first-principle computations of CPP GMR developed earlier.?* The method is based
on the recursive technique, which is implemented within the TB-LMTO method, and allows treating
various types of disorder by using a lateral supercell confined to individua atomic layers. The
sengitivity of the GMR ratio to the order of the magnetic layers was also found in the calculations by
Sanvito et al.>*® within a simple tight-binding two-band model.

An interesting prediction has been made by Mathon®'® who found an exponential growth of CPP
GMR in magnetic multilayers with randomly varying thickness of the layers, which may reflect the
island-like growth in epitaxia heterostructures. The predicted effect arises due to the localization of
the electrons in both spin channels within the antiparallel configuration of the multilayer. The
localization appears, however, as a result of disregarding other types of disorder in the multilayer.
This assumption makes the system quasi one-dimensional with arandom potential which localizes the
wave function at the distance of the order of lj,c~NA, where A is the mean free path and N is the
number of open conducting channels in the one-dimensional system. The predicted large values of
GMR will, therefore, be destroyed in real multilayers. The disorder-induced enhancement of GMR

84

was recently found by Sanvito et al.2*” However, as was shown in ref.208, this enhancement is due to
the small size of the unit cell in the transverse direction of the multilayer which was used in these
computations.

All the above models assume that there is no spin-flip scattering and, therefore, the electrical
current can be described independently within the two spin-conduction channels. In bulk 3d metals
the probability of spin-flip scattering processes is normally small as compared to the probability of
the scattering processes in which the spin is conserved such as electron-phonon scattering. It is only
at temperatures comparable to the Curie temperature that spin-flip scattering processes due to
electron-magnon interactions cause mixing of the electrons within the two spin channels. This means
that spin is conserved over long distances and, therefore, the electrical conduction occurs in parallel
for the two spin channels. These arguments allowed us to ignore spin-flip scattering when considering
the CIP geometry, because CIP GMR is exponentially dependent on the mean free path, which is
normally much shorter than the spin-diffusion length.

In the CPP geometry the situation is different. In the limit of large layer thicknesses the series-
resistor model predicts a constant GMR. This can be seen from equations (V1.3) and (V1.4): at large
d=dwm=drm the contribution from the interface resistances can be neglected and both ARxp and AAR
become proportional to d, which implies that CPP GMR is independent of the layer thickness. As has
been shown by Valet and Fert, %2 this is not the case when a finite spin-diffusion length is taken into
account. The model of Valet and Fert is based on a solution of the Boltzmann equation within a free-
electron model, which in addition to the usual electron relaxation term for the momentum takes into
account the spin relaxation term due to spin-flip scattering. The spin relaxation balances spin
accumulation, which is generated when the electrical current flows perpendicular to the interfaces due
to the spin splitting of the chemical potential.**® The spin-flip scattering determines the spin-diffusion
length — a scale that controls the distance over which Mott’s two-current model holds. The model of
Valet and Fert predicts that at large layer thicknesses CPP GMR decays exponentially, the length
scale of this decay being determined by the spin diffusion length. In the limit when the layer
thicknesses are much shorter than spin-diffusion length, this model reduces to the series-resistor
mode!,*” in which the resistances of the multilayer are described by equations (V1.3) and (V1.4).

The model of Valet and Fert has been extensively used to treat the experimental data on CPP
GMR and to extract the values of the spin-diffusion length in various ferromagnetic and non-magnetic
metals and their aloys. In particular, Yang et al.?'® have shown that the spin-diffusion length in Cu
and Ag can be dramatically shortened by doping these metals with Pt and Mn impurities. This
shortening of the spin-diffusion length was ascribed to the spin-flip scattering associated with the
spin-orbit coupling at Pt sites and with the spin-spin coupling at Mn sites. An unexpectedly low spin-
diffusion length was found for permalloy in experiments on NigoFex/Cu/NigoFexn exchange-biased
spin valves using superconducting contacts™ and in experiments on electrodeposited NigoFex/Cu
multilayered nanowires.”?* We refer the reader to the reviews??2*? and original papers cited in these
reviews for a detailed discussion of these and other studies of the spin diffusion length in various
metals. Here we would like to note that these investigations do not take into account the influence of
the finite-size effects on the interface resistance described above. The departures from the series-
resistor model is normally interpreted in terms of the contributions from spin-flip scattering either in
ferromagnetic or in non-magnetic metals. For example, Park et al.?? investigated the influence of the
inserted metal M= FesoMnso, V, Nb, and W on CPP GMR in FesoMnso/NigoFeso/(Cu/M (d)/Cu)n/
NigoFey spin valves and interpreted the observed exponential variation of AAR=ARA—ARp as a
function of the metal layer thickness d in terms of the spin memory loss in the bulk of these metas
and at the Cu/M interfaces. This variation might, however, be caused by the layer-thickness-
dependent interface resistance, which approaches its asymptotic value exponentially, scaling with the
mean free path (see Fig.40b). In order to clarify this matter it would be very useful to compare the
results of such or similar experiments with accurate cal culations of CPP GMR based on realistic band
structures.
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VII. CONCLUSIONS

Giant magnetoresistance is the large change in electrical resistance of metallic layered systems
when the magnetizations of the ferromagnetic layers are reoriented relative to one another under the
application of an external magnetic field. This reorientation of the magnetic moments alters both the
electronic structure and the scattering of the conduction electrons in these systems, which causes the
change in the resistance. Various types of magnetic layered structures have been found which show
sizable values of GMR. Highest values are obtained in magnetic multilayer structures, such as Fe/Cr
and Co/Cu, which remain attractive from the point of view of studying the fundamental physics
involved. The exchange-biased spin valves show a combination of properties that make these systems
more useful for applicationsin low-field sensors, such as read heads for magnetic recording.

The discovery of GMR has stimulated significant progress in the theory of electronic transport in
magnetic layered structures. First theories were based on simplified band structures, such as free-
electron models or single-band tight-binding models. These models are physically transparent and,
though simple, capture some important physics of GMR. For example, a free-electron theory based on
the semiclassical description of electronic transport provided an understanding of the thickness
dependence of CIP GMR in magnetic multilayers and spin valves. However, these simple band
models have no predictive power for the quantitative description of GMR and, therefore,
incorporating an accurate band structure of the multilayer within the theory of GMR is crucial.
Another important ingredient for the predictive modeling of the conductivity and magnetoresistance
in real metallic layered structures is using a quantum-mechanical theory of transport. The semi-
classical Boltzmann transport theory can only be applied in systems with sufficiently low
defect/impurity density. It breaks down in magnetic multilayers of practical interest because the
subband energy splitting is comparable with the life-time broadening due to scattering. In these
circumstances the quantum-mechanical theory within an accurate multiband treatment of the
electronic structure is the only way to make definitive statements about the origins of GMR.

The principal challenge for first-principle modeling lies in the realistic description of the defect
scattering. A reliable approach must include contribution to the resistivity from intrinsic structural
defects, which are aways present in experimental conditions. However, proper first-principle
treatment of al the existing defects in the multilayers is very complicated and, therefore, reliable
simplified models become of great importance. The presence of structural defects may also be
decisive for predicting realistic values of the scattering spin asymmetries of impurities, since some
results obtained in the dilute limit in the absence of structural defects disagree strongly with
experiment. Including misaligned magnetic moments at the interfaces in the transport theory is an
important issue, which has not yet been considered in detail. Progress in developing afully relativistic
theory of transport may help to elucidate the influence of spin-orbit scattering on GMR and to
calculate the spin-diffusion length in those cases when it originates from the spin-orbit interaction at
some impurities. Considering the effect of the electron-phonon scattering is important for a
description of the temperature dependence of GMR. Little has been done to include this mechanism
of scattering in the theory to date. The problem is, however, very complicated — it is aready difficult
to calculate the temperature dependence of the resistivity of bulk non-magnetic metals.

Recent experimental and theoretical results indicate that the mechanism of GMR within the CPP
geometry has not yet been fully understood. It has been believed for along time that the only relevant
scale which governs CPP GMR is the spin-diffusion length: once the overall thickness of a magnetic
multilayer is shorter than the spin-diffusion length, the series-resistor model becomes valid, in which
there are no relevant lengths except the layer thicknesses. It appears, however, that if the layer
thicknesses are less than or comparable to the mean free path the interface resistance depends on the
layer thicknesses making the series-resistor model inapplicable. The mean free path becomes,
therefore, an additional scale, which controls CPP GMR. The application of the series-resistor model
is not in genera vaid for analyzing experimenta results, even when the spin-diffusion length is
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infinite. On the other hand, deviations from the series-resistor model do not necessarily imply that
spin-flip scattering processes cause these deviations. Thus, one has to re-examine the parameters
obtained from experimental data that have been modeled by the series-resistor model. Comparison of
experimental results on CPP GMR with calculations based on accurate multiband models is greatly
desirable.

An interesting issue, which has not been reflected in this article, is spin transport through a
domain wall in thin films and magnetic nanowires.?*** The magnetic configuration in the system
which consists of two ferromagnetic domains separated by a domain wall closely resembles that of a
GMR magnetic trilayer: the two regions of oppositely pointing magnetizations are separated by a
spacer region, i.e. by the domain wall. The magnetoresistive effect associated with the domain wall in
bulk ferromagnets is relatively small due to the large thickness of the domain wall, which is of the
order of 1um. Although the domain wall width can be reduced in thin films the magnetoresistive
effect is still small (less than 1%°%%). Nevertheless, the domain wall magnetoresistance is interesting
from the fundamental point of view where there is still some controversy in our understanding of this
phenomenon.??’ In addition, the domain wall can be made very abrupt in nanocontacts,>° which gives
the opportunity to observe strongly enhanced magnetoresistance®' and spin-dependent conductance
quantization.?#2%

Spin valves containing an antiferromagnetic oxide layer, such as NiO, for exchange biasing and a
noble metal overlayer are of increasing interest. Thisis due to the enhanced values of GMR which can
be obtained in these spin valves and which makes them attractive for applications. These enhanced
values are explained by the specular scattering of the electrons from the ferromagnet/oxide and
ferromagnet/noble metal interfaces. If fully specular reflection on both sides of the FM/NM/FM
trilayer is created, the physical situation becomes similar to that of a FM/NM multilayer, resulting in a
large gain in the GMR. Unfortunately, the structural quality of the trilayers is normally not as good as
the corresponding multilayers, which effects negatively GMR in the spin valves. Recent experimental
studies show that the mechanism of specular scattering from ferromagnet/noble metal interfaces does
not explain al the available experimental results.® Other effects seem to be important and require
further investigations both in theory and in experiment. In addition, very recently the enhancement of
GMR was found in spin valve structuress containing nano-oxide layers in the pinned or free
ferromagnetic layers® The mechanism of this enhancement is not completely understood and
requires further research.

From the point of view of applications, improvement in the structural integrity of the spin valves
is crucial. The microstructure affects strongly not only the transport properties but also the magnetic
characteristics.?® The correlation between the microstructure and micromagnetics is a challenging
issue, which requires further investigations. In particular, we need to study the influence of defects on
the creation of domain walls in the process of switching and the magnetization ripple in nanoscale
films. The mechanisms of exchange biasing and the search for antiferromagnetic compounds which
are sui‘tﬁable as exchange biasing materials are other important issues for the applications of spin
valves.

Finally, although magnetoel ectronics applications based on magnetotransport phenomena distinct
from GMR, such as tunneling magnetoresistance or spin injection into semiconductors, have recently
started to attract more and more attention,?®’ the physics of GMR in metallic layered structures is so
multifaceted that it will undoubtedly remain the subject of great interest in the future.
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