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PHYSICS 151 – Notes for Online Lecture #33 

Moving From Fluids To Gases 
There is a quantity called compressibility that helps distinguish between solids, liquids and 
gases.  If you squeeze a solid with your hands, there is generally no effect.  You have to squeeze 
really, really hard to do anything to it.  On the other hand, if I put water in a balloon, there is 
some amount of squeezing I can do before it’s too hard to squeeze.  If, however, we look at how 
gases behave, we find that it is much easier to cause a gas to change its volume.   

The equation we used for thermal expansion doesn’t consider pressure at all.  It turns out that the 
volume of a gas depends on: 

• pressure 

• temperature (we saw this with the balloon in LN2) 

• mass 

We can express all of these dependencies by something called the equation of state.  An 
equation of state is sort of like a master equation, from which you can tell lots of things about a 
system.   

One of the things we have to consider is that if I change the temperature or pressure of a system, 
it may take some time before the entire system is at the same temperature or pressure.  We 
therefore have to wait for things to settle down before what we're about to derive becomes 
applicable. 

Also, we can’t describe gases that are very dense, as there are many interactions between the 
atoms or molecules and that makes things very difficult.  Similarly, if we are close to the 
temperature at which the gas becomes a liquid, there are correlations between atoms or 
molecules and again we can’t describe that situation. 

 

This theory thus requires: 

• a system in thermal equilibrium 
(all parts of the system are at the 
same T, P) 

• a non-dense gas 

• a gas not close to its liquefaction 
point 

Temperature

Pressure How Much?

Volume
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Experimentally:  someone measured how the volume of a gas depends on the pressure very 
carefully and found that: 

BOYLE'S LAW 

V
P

∝
1

  

at constant temperature and if the amount of gas doesn't change. 

This is known as Boyle’s Law, after the man who figured this out back in the 1600’s.  We 
sometimes write this as: 

PV = constant at constant temperature and constant amount of gas 

It took another century before someone (Charles) found that, when the pressure is constant and 
not too high, the volume varies directly with the temperature: 

CHARLES' LAW 

V T∝   
at constant pressure and if the amount of gas doesn't change. 

We can experimentally verify Charles' Law by 
measuring the volume of a gas (say, in a balloon) as 
a function of the gas's temperature.  If we plot the 
volume as a function of temperature, we find that 
(until I get near the liquefaction point) we get a 
straight line.  Amazingly, for any gas, at any 
reasonable pressure, the line has the exact same 
value for the point at which the volume goes to 
zero.  This temperature is -273 °C - which you 
might is 0 K.  This is why the Kelvin temperature 
scale is so special - it is not as arbitrary as the other 
scales we have studied. 

GAY-LUSSAC'S LAW 

P T∝   
at constant volume and if the amount of gas doesn't change. 

Your author emphasizes that these three 
relationships aren’t really laws – they hold 
over a very limited range of the parameters 
– that is, only under specific conditions.  
Let’s review our chart now. 

The problem here is that all we have are 
proportionalities.  So we can find ratios, but 
we can't actually calculate a number. 
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There’s this fourth variable on the chart because the quantity that we still have to include is the 
mass of the gas – how many molecules there are. 

If I blow up a balloon, I put more molecules and thus more mass into the balloon - this causes it 
to have a bigger volume.  Again, if you carefully measure it, you find that 

V m∝   if pressure and temperature are constant  

If we put all of these relationships together, we find 

PV mT∝  
But we still can’t actually get a number out of this.  One of the things we have to introduce in 
order to make this law work is the idea of a mole.  We talked about the balloon and that the 
pressure and the volume depended on the number of molecules inside, so we know that the 
number of molecules must somehow be important.  m is the mass of the gas, in grams.  However, 
depending on the material, the same weight of a material can have different numbers of 
molecules. 

Molecular mass.  The molecular mass of a material is measured in increments of u, the atomic 
mass unit 

1u = 1.66 x 10-27 kg 

When you’re dealing with atoms and molecules, the masses are very small, so we use a different 
unit to avoid all those very large and very small numbers.  This system assigns the mass of 
carbon to be exactly 12.  The molecular mass of any molecule can be calculated by adding up the 
molecular masses of each atom.  The H atom is 1.0079u – see the back of the book for the rest.  
In many cases, the molecular mass is twice the atomic number 

 

So the molecular mass  of H2 = 2(1.0079) = 2   of CO2 = 12+2(16) = 44 

of O2 = 2(16) = 32   of Ne2 = 2(20) = 40 

Moles 
The number of moles in a certain mass of a material is given by: 

n mol mass g( ) ( )
=

molecular mass (u)
 

Avogadro's Number:  The idea of moles was introduced by Avogadro, who found that, at equal 
pressures, volumes and temperatures, all gases will contain the same number of molecules.  The 
number of molecules in one mole of gas is the same for all gases.  The number of molecules in a 
mole is  

NA= 6.02 x 1023 molecules/mole. 

So the total number of molecules (N) in n moles is 

N = nNA  

or n mol mass g N
NA

( ) ( )
= =

molecular mass (u)
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This is how the number of molecules comes into play in our diagram 

From PV mT∝ , instead of using the mass, let’s 
instead use the number of moles 

We had V m∝  so V n∝ at constant P,T and we 
finally get 

PV nT∝  
It turns out, then, that if you can measure P,V,T and n 
(which you can), you can determine the proportionality 
constant.  It turns out, nicely enough, that the 
proportionality constant is the same for all gases! 

We call it R, where R = 8.315 J/mol-K.  R is called the universal gas constant because it is the 
same for all different gases.  R is sometimes expressed in other units: R = 0.0821 L-atm/mol-K 
for example.  Volume is sometimes given in liters and pressure in atmosphere, so this form may 
be handier. 

When you introduce the idea of moles, you can have one law applicable for all gases with only 
one constant to remember.  Note:  from looking at the units of R, you see that you have to 
measure the temperature in K -not °C! 

So finally, we arrive at the ideal gas law 

PV nRT=   where, don’t forget, T is measured in Kelvin. 

Using n = N/NA, we can also write: 
PV nRT

PV N
N

RT PV N R
N

T

PV NkT
A A

=

= = =

=

 

where k = R/NA = 1.38 x 10-23 J/K.  k is called Boltzmann’s constant.  As a convention, we 
frequently use the notation:  STP - standard temperature and pressure, meaning  

T = 0°C (273 °K) 

P = 1.00 atm = 1.013 x 105 N/m2. 

 

At STP, all ideal gases have the same volume.  We can show this from writing: 
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1 L = 1000 cm3 = 1 x 10-3 m3, so the volume of one mole of any ideal gas at STP is 22.4 liters. 

Temperature
(T)

Pressure
(P)

Moles
(n)

Volume
(V)

V ∝ T at constant
pressure, mass

P ∝ T at constant
volume, mass

V ∝ 1/P at 
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mass V ∝ n at constant

temperature, pressure
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Applying the Ideal Gas Law 
When we use instruments to measure pressure, the changes in pressure are small compared to the 
value of atmospheric pressure, so we use atmospheric pressure as a reference.  The value shown 
on the instrument is thus the value of the pressure above or below that of the atmosphere. 

Pabsolute =  Pgauge + Patm = Pgauge + 1.01 x 105 Pa 

When using pressures in the ideal gas law, you must use absolute pressure and not gauge 
pressure! 

 

All temperatures should be in Kelvin! 

A common situation in applying the IGL is to be comparing a system at two different times.  
Your goal is to rewrite the IGL so that all the variables that change are on one side of the 
equation and those that don’t are on the other side.  You then write an equation where the 
variables that change are set equal to each other in the two situations (set the ones that do change 
equal to each other with subscripts).   

.   

EXAMPLE 33-1: A typical region of interstellar space may contain 106 atoms per cubic meter 
(primarily hydrogen) at a temperature of 100 K.  What is the pressure exerted by this gas? 
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EXAMPLE 33-2:  If the pressure of a gas is quadrupled and the volume expands by a factor of 
two, how does the temperature change? 

Note that pressure, volume, and temperature are changing – the number of moles is not.  

 

1 1 2 2

1 2
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EXAMPLE 33-3: You check your car’s tire pressure in the morning, when the temperature is 
10°C and find the gauge pressure to be 180 kPa.  After a long drive, the temperature of the air in 
the tires is 45°C – what will the pressure gauge read? 
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Convert gauge pressures to absolute pressures:  P1 = 180 kPa + 101 kPa = 281 kPa 

Convert temperatures to Kelvin:   T1 = 10°C = (10+273)K = 283 K 

     T2 = 45°C = (45+273)K = 318 K 

n isn’t changing, nor is V.    

This is a typical IGL problem where you are comparing two different situations.  There will be 
some variables in the IGL that change between the two situations and some that stay the same.  
You want to move all of those that don’t change to one side of the equation, and set the ones that 
do change equal to each other with subscripts.   

1 2

1 2

2
1 2

1

2

2

318281
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PV nRT
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T
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K

kPa P

=

=

=

=

=

=

 

so the gauge pressure will be 316 kPa - 101 kPa = 215 kPa 

 
A cylindrical flask is fitted with an airtight piston that is free to slide up and down, 
as shown in the figure below. . A mass rests on top of the piston. Contained within 
the flask is an ideal gas at a constant temperature of 313 K. Initially the pressure 
applied by the piston and the mass is 137 kPa and the height of the piston above 

the base of the flask is 23.4 cm. When additional mass is added to the piston, the height of the 
piston decreases to 20.0 cm. Find the new pressure applied by the piston. 

In this problems n and T do not change! 
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You Try 
It! 


