PHYSICS 151 — Notes for Online Lecture #27

Reflection of Waves

Waves obey something we call the principle of linear superposition. That is, if two waves are

in the same region of
space at the same

time, they  will
interact with each
other. Linear

superposition allows
us to describe how
they interact fairly
easily. If we were to
plot the two waves as
a function of time,
they might look like
the top two waves in
the picture to the
right. Linear
superposition means
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that we just add the value of each wave and plot that as the sum. So the result of this
combination of waves is another sine wave, but with an amplitude that is the sum of the
amplitudes of the two starting waves.

Let’s repeat this, but shift one of the waves by 180°
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This time, the
maximum of the first

wave is at the
minimum  of  the
second and vice-

versa, so when you
add them up, you get
zero.

When the  waves
interact so that the
sum is larger than the
original waves, we
call that constructive
interference. When
they interact so that
the sum is smaller, we
call that destructive
interference. You
can have everything
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in between — partially destructive and partially constructive interference.

One of the reasons we care about how the waves interact with each other is because there are a
number of places where waves travel into an object — like an organ pipe — and travel out again.
Use the rope as an example. If | shake the rope, a pulse traveling down the rope will reach the
fixed end and will reflect back inverted. If | keep shaking the rope, I set up a wave train such
that, when one pulse reaches the end of the line and turns around, it will interfere with one of the
pulses still heading toward the wall. There will be some points along the rope where the waves
interact constructively and some points where they interact destructively. The result is that there
are some points on the rope that are always standing still. We call these nodes. There are other
points at which the wave has maximum values, which we call anti-nodes. The waves that result
from this are called standing waves.

If I move my hand faster up and down, you see that I can change the number of nodes and
antinodes. The length of the rope limits the configurations | can set up. The fundamental is the
configuration in which there are no nodes (except the two at the end). When you pluck a guitar
string, for example, you are exciting the fundamental. If you change the length of the string by
holding it at one of the frets, you change the wavelength and thus the frequency heard.

Some nomenclature:

Any frequency that is an integral multiple of the fundamental is called a harmonic.
The first harmonic is the frequency, which we'll denote as f;.

The second harmonic has a frequency exactly twice the fundamental, so f, = 2f;

The first harmonic is the situation in which there is one node. Two nodes denote the second
harmonic, etc.

The other piece of nomenclature is the idea of an overtone. Overtones are the harmonics above
the fundamental frequency. The first overtone for a wave on a string is the second harmonic.
The second overtone for a wave on a string is the third harmonic

You’ll notice that we don’t have many options here. There are either one, two, three, etc. nodes
on our string. This limits the number of patterns we can have. Let’s investigate how many
patterns are possible and the conditions under which they are produced. The chart at left shows
that there is a
pattern.  The n"

A2 =L First Harmonic harmonic is related
(fundamental) 44 the length as
nA
A,=1L Second Harmonic L= n
(first overtone) 2

where n = 1 for the
3A,/2 = L Third Harmonic  first harmonic, 2 for
(second overtone) the second

harmonic, etc.

2h,= L Fourth Harmonic The WaVEIengthS
(third overtone) for each harmonic
are given by:

Lecture 27 Page 2



nA

n

L=

2
2L
T

The n™ harmonic will always have n loops in the wave pattern.

Note that the frequency and the wavelength of each wave on the string is different, but that
the all the waves have the same velocity.

V= f17\,1 = fg?xz = f37\,3
and so on.
We can related the harmonics to the fundamental as follows:

f =Y substitute in A, -
n

n
n
\Y
oL
n

Y,
f.=n —|=nf
n (ZLJ 1

EXAMPLE 27-1: A guitar string has a fundamental frequency of 440 Hz and a length of 0.50 m.
a) Draw the picture of the first five overtones and find their frequencies.

b) What are the wavelengths of the waves on the string?

c) What is the velocity of waves on the string?

d) What is the velocity of the sound waves produced by the string?

Solution a: The first three overtones are given by the picture above. The fourth overtone
(which is the same as the fifth harmonic) will have four nodes/five loops. The fifth overtone
(which is the same as the sixth harmonic) will have five nodes and six loops

A harmonic is an integral multiple of the fundamental. We will always have that f, = nfy, so
f, = 2f, = 2(440Hz)=880 Hz
f, = 3f, = 3(440Hz)=1320 Hz
f, = 4f, = 4(440Hz)=1760Hz
fy = 5f, = 5(440Hz)=2200 Hz
fs = 6f, = 6(440Hz)=2640Hz

Notice that the difference between any two harmonics that differ by one will always be equal to
the fundamental frequency.
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f4—f3:4f1—3f1:f1
f3—f2:3f1—2f1:f1

Solution b: The wavelength of the waves can be found from

Ay
M
Ay
As

Ay

As

_2L
n
= % =2(050m) =10m
_ 2L _o50m
2
_2L _2h50m=033m
3 3
_2b _Losom=o025m
4 2
_ 2L _2050m=020m
5 5

Solution c: The velocity of waves on the string is given by

v =ik, = (440Hz)(LOOM)=440™

Note that you get the same thing if you multiply any f, and A,!

Solution d: The velocity of the sound waves produced will be 340 m/s, which is the general
speed of sound at 15°C. Don't confuse the two velocities!

EXAMPLE 27-2 A nylon string is stretched between supports 1.20 m apart.

a) what is the wavelength of waves on this string?

b) If the speed of transverse waves on a string is 850 m/s, what is the frequency of the first
harmonic and the first two overtones?

a) To determine
fundamental.

the wavelength,

draw the

The fundamental is one half of a wavelength. The

wavelength is therefore twice the
string, or 2.40 m.

length of the

b) The frequency of the first harmonic is given by

\
f,=—
1 }\’1
850 ™
f, = > =350Hz
240m

The frequency of the first two overtones are given by f, = 2f; = 700 Hz and f; = 3f; = 1050 Hz
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Waves in Tubes

String instruments produce sound by causing Making Sound with Strings
vibrations in the string. These vibrations excite the

air around the string, causing the air around the

strings to be alternately compressed and rarefied
creating sound waves. Note that the velocity of
waves on a string is not the same thing as the ;
velocity of sound waves. Ear

In wind instruments, the pressure variations are
controlled by using a column. Consider a tube of

length L that is open at both ends. When you blow
into the tube, you create a longitudinal wave. The
sound wave is thus created directly. In a string
instrument, you create a transverse wave on the

string, which then

displacement excites  the air
antinode surrounding the string
and creates the sound
displacsment ] wave  (which s

noae

longitudinal). The
sound wave is created
directly by wind
instruments.

—— — Longitudinal ~ waves

are variations in the
density of the air in a
given part of the tube. If you set up longitudinal standing waves, we find an analogous situation
to the transverse standing waves seen on a string. If we could take a picture of the movement of
the air molecules in each part of the standing wave, we would find the following: at some points
along the standing wave, there is no motion of the molecules at that position. This is called
displacement node, exactly like the node along a string when the string doesn’t move. Similarly,
there are points along the tube where the molecules oscillate at their maximum amplitudes.
These are displacement antinodes. We can plot the amplitude of the motion of the molecules to
illustrate this. Note that the diagrams for the production of sound by wind instruments are
different, because we're plotting displacement waves and not the actual shape of the air.

-—eo—> <«—o> ° o> <« eo—>

Waves in a pipe open at both ends.

We're going to be working in the limit of the tube length being much greater than the diameter of
the tube. This allows us to ignore effects at the ends of the tube that would complicate our
description.

At the open end of a column of air, the air molecules can move freely, so there will be a
displacement antinode at the open end of a pipe. We can use the same approach to determine the
modes of a tube of length L open at both ends are as we did in finding the waves on a string -
draw the possibilities.
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For the first harmonic (fundamental), we
FirstHarmonic  have half of a wavelength in the tube
A /2 =L %
f, = vin, = v/2L L=—
2

For the second mode, we have a full

Second Harmonic

A, =L .
: wavelength in the tube
f, = viX,
= v/L
= 2v/2L L=)A= &
Third Harmonic 2
3042 = L For the third mode,
f,=v/A
? = 3v/32L L= %
2
FO””Z; a_”: °M¢ 5o in general, we can extrapolate this to:
=
f, = vIA by
) = ZV/‘L L= n—n
=4v/2L 2
v
f,=n—
2L

These formulas are good for waves in a tube open on both ends.
Examples of instruments with pipes open at both ends:

o flute

e trumpet

e Organ pipes

You change the length of the tube by pressing keys. In a flute, closing a key elongates the tube.
In a trumpet or French horn, pressing keys adds additional lengths of tubing to the pipe.

EXAMPLE 27-3: a) Calculate the fundamental frequency and the first three overtones of a
hollow pipe open at both ends having length 30.0 cm. b) Calculate the wavelength of each wave.

We have

f, = nﬁ
SO
\'
fi=or
340m
1~ 2(030m)
f, =570Hz
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We have the same relationship between the frequencies: f, = nf;. So f, = 2f; = 1140 Hz and f; =
3f; = 1710 Hz.

b) The wavelength is given by

n“n
\'
dop = —
n fn
340m
= ~060m
570Hz
340 ™
, = ~0.30m
1140Hz
340
,= —022m
1570Hz

Standing Waves in a Pipe Open on One End

We can also have pipes that are closed on one end and open on the other. (Closed on two ends
wouldn’t make any sense.) This is a slightly different case, because at the closed end, we’re
required to have a displacement node, which will change the wave patterns allowed. Although
the frequencies of waves in a pipe open at two ends are the same as those of a string with the
same length, the case of waves in a pipe open at only one end will be quite different. We can
draw the allowed patterns as shown.

In general,
W aves in Pipes Open at One End by

\ k1/4: L V
f

ofy = viA, = viAL

but n can only be odd! Therefore, we
L = 32,04 talk about this case having only odd

/ f3=v/hs=3v/AL  harmonics. There are only Ay, A3, As...We
call 5 the first overtone, A5 the second

overtone, etc.

L = 5A,/4
f,= v, = 5vaL  Examples of instruments with pipes closed
at one end include organ pipes

L =7x,/4

EXAMPLE 36-4: a) Calculate the
f;=viN, = T7Tv/4L

fundamental frequency and the first three
overtones of a hollow pipe open at one
end having length 30.0 cm. b) Calculate the wavelength of each wave.
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We have

f

n

SO

c) The wavelength is given by

Lecture 27

= nﬁ, but we are restricted to n odd

LA i ST TP
L~ 4(0.30m)
f3=3L=3&=850H2
aL " 4(0.30m)
fo5Y o5 0% a0
aL " 4(0:30m)
o7 7 389% _ig0h;
aL ' 4(0.30m)
v=~FA,
\'
hy = —
n fn
340 ™
1= =120m
283Hz
340 ™
L= ~040m
850 Hz
340 ™
. = ~024m
1420 Hz
340 ™
5= =018m
1980 Hz
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