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PHYSICS 151 – Notes for Online Lecture #27 

Reflection of Waves 
Waves obey something we call the principle of linear superposition.  That is, if two waves are 
in the same region of 
space at the same 
time, they will 
interact with each 
other.  Linear 
superposition allows 
us to describe how 
they interact fairly 
easily.  If we were to 
plot the two waves as 
a function of time, 
they might look like 
the top two waves in 
the picture to the 
right.  Linear 
superposition means 
that we just add the value of each wave and plot that as the sum.  So the result of this 
combination of waves is another sine wave, but with an amplitude that is the sum of the 
amplitudes of the two starting waves.  

Let’s repeat this, but shift one of the waves by 180° 

This time, the 
maximum of the first 
wave is at the 
minimum of the 
second and vice-
versa, so when you 
add them up, you get 
zero. 

When the waves 
interact so that the 
sum is larger than the 
original waves, we 
call that constructive 
interference.  When 
they interact so that 
the sum is smaller, we 
call that destructive 
interference.  You 
can have everything 

y 1

y 2

y 1 + 2

t

t

t

 

 
y1

y2

y1+ y2
t

t

t



Lecture 27  Page  2

in between – partially destructive and partially constructive interference. 

One of the reasons we care about how the waves interact with each other is because there are a 
number of places where waves travel into an object – like an organ pipe – and travel out again. 
Use the rope as an example.  If I shake the rope, a pulse traveling down the rope will reach the 
fixed end and will reflect back inverted.  If I keep shaking the rope, I set up a wave train such 
that, when one pulse reaches the end of the line and turns around, it will interfere with one of the 
pulses still heading toward the wall.  There will be some points along the rope where the waves 
interact constructively and some points where they interact destructively.  The result is that there 
are some points on the rope that are always standing still.  We call these nodes.  There are other 
points at which the wave has maximum values, which we call anti-nodes.  The waves that result 
from this are called standing waves. 

If I move my hand faster up and down, you see that I can change the number of nodes and 
antinodes.  The length of the rope limits the configurations I can set up.  The fundamental is the 
configuration in which there are no nodes (except the two at the end).  When you pluck a guitar 
string, for example, you are exciting the fundamental.  If you change the length of the string by 
holding it at one of the frets, you change the wavelength and thus the frequency heard.   

Some nomenclature: 

Any frequency that is an integral multiple of the fundamental is called a harmonic.  

The first harmonic is the frequency, which we'll denote as f1. 

The second harmonic has a frequency exactly twice the fundamental, so f2 = 2f1 

The first harmonic is the situation in which there is one node.  Two nodes denote the second 
harmonic, etc.  

The other piece of nomenclature is the idea of an overtone.  Overtones are the harmonics above 
the fundamental frequency.  The first overtone for a wave on a string is the second harmonic.  
The second overtone for a wave on a string is the third harmonic 

You’ll notice that we don’t have many options here.  There are either one, two, three, etc. nodes 
on our string.  This limits the number of patterns we can have.  Let’s investigate how many 
patterns are possible and the conditions under which they are produced.  The chart at left shows 

that there is a 
pattern.  The nth 
harmonic is related 
to the length as 

L
n n=

λ
2

 

where n = 1 for the 
first harmonic, 2 for 
the second 
harmonic, etc. 

The wavelengths 
for each harmonic 
are given by: 

λ 1 /2  =  L

λ 2  =  L

3 λ 3 /2  =  L

2 λ 4 =  L

F ir s t  H a r m o n ic
( f u n d a m e n t a l)

S e c o n d  H a r m o n ic
( f ir s t  o v e r to n e )

T h ir d  H a r m o n ic
( s e c o n d  o v e r t o n e )

F o u r t h  H a r m o n ic
( t h ir d  o v e r to n e )
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The nth harmonic will always have n loops in the wave pattern. 
 

Note that the frequency and the wavelength of each wave on the string is different, but that 
the all the waves have the same velocity.   

v = f1λ1 = f2λ2 = f3λ3 

and so on. 

We can related the harmonics to the fundamental as follows: 
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EXAMPLE 27-1: A guitar string has a fundamental frequency of 440 Hz and a length of 0.50 m.   

a) Draw the picture of the first five overtones and find their frequencies.   

b) What are the wavelengths of the waves on the string? 

c) What is the velocity of waves on the string? 

d) What is the velocity of the sound waves produced by the string? 

Solution a:  The first three overtones are given by the picture above.  The fourth overtone 
(which is the same as the fifth harmonic) will have four nodes/five loops.  The fifth overtone 
(which is the same as the sixth harmonic) will have five nodes and six loops 

A harmonic is an integral multiple of the fundamental.  We will always have that fn = nf1, so 

f f Hz Hz

f f Hz Hz

f f Hz Hz

f f Hz Hz

f f Hz Hz

2 1

3 1

4 1

5 1

6 1

2 2 440 880

3 3 440 1320

4 4 440 1760

5 5 440 2200

6 6 440 2640

= = =

= = =

= = =

= = =

= = =

b g
b g
b g
b g
b g

 

Notice that the difference between any two harmonics that differ by one will always be equal to 
the fundamental frequency. 
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f4 – f3 = 4f1 – 3f1 = f1 

f3 – f2 = 3f1 – 2f1 = f1 

Solution b:  The wavelength of the waves can be found from 
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Solution c:  The velocity of waves on the string is given by 

v f Hz m m
s= = =1 1 440 100 440λ b gb g.  

Note that you get the same thing if you multiply any fn and λn! 

Solution d:  The velocity of the sound waves produced will be 340 m/s, which is the general 
speed of sound at 15ºC.  Don't confuse the two velocities! 

EXAMPLE 27-2  A nylon string is stretched between supports 1.20 m apart. 

a) what is the wavelength of waves on this string? 

b) If the speed of transverse waves on a string is 850 m/s, what is the frequency of the first 
harmonic and the first two overtones? 

 

a) To determine the wavelength, draw the 
fundamental. 

The fundamental is one half of a wavelength.  The 
wavelength is therefore twice the length of the 
string, or 2.40 m. 

b) The frequency of the first harmonic is given by 

f v

f
m

Hz
m
s

1
1

1
850
2 40

350

=

= =

λ

.

 

The frequency of the first two overtones are given by f2 = 2f1 = 700 Hz and f3 = 3f1 = 1050 Hz 

1.20 m
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Waves in Tubes 
String instruments produce sound by causing 
vibrations in the string.  These vibrations excite the 
air around the string, causing the air around the 
strings to be alternately compressed and rarefied 
creating sound waves.  Note that the velocity of 
waves on a string is not the same thing as the 
velocity of sound waves. 

In wind instruments, the pressure variations are 
controlled by using a column.  Consider a tube of 
length L that is open at both ends.  When you blow 
into the tube, you create a longitudinal wave.  The 
sound wave is thus created directly. In a string 
instrument, you create a transverse wave on the 

string, which then 
excites the air 
surrounding the string 
and creates the sound 
wave (which is 
longitudinal).  The 
sound wave is created 
directly by wind 
instruments. 

Longitudinal waves 
are variations in the 
density of the air in a 

given part of the tube.  If you set up longitudinal standing waves, we find an analogous situation 
to the transverse standing waves seen on a string.  If we could take a picture of the movement of 
the air molecules in each part of the standing wave, we would find the following:  at some points 
along the standing wave, there is no motion of the molecules at that position.  This is called 
displacement node, exactly like the node along a string when the string doesn’t move.  Similarly, 
there are points along the tube where the molecules oscillate at their maximum amplitudes.  
These are displacement antinodes.  We can plot the amplitude of the motion of the molecules to 
illustrate this.  Note that the diagrams for the production of sound by wind instruments are 
different, because we're plotting displacement waves and not the actual shape of the air. 

Waves in a pipe open at both ends. 
We're going to be working in the limit of the tube length being much greater than the diameter of 
the tube.  This allows us to ignore effects at the ends of the tube that would complicate our 
description. 

At the open end of a column of air, the air molecules can move freely, so there will be a 
displacement antinode at the open end of a pipe.  We can use the same approach to determine the 
modes of a tube of length L open at both ends are as we did in finding the waves on a string - 
draw the possibilities. 

d is p la c e m e n t
a n t in o d e

d is p la c e m e n t
n o d e

Making Sound with Strings

Ear
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For the first harmonic (fundamental), we 
have half of a wavelength in the tube 

L =
λ
2

 

For the second mode, we have a full 
wavelength in the tube 

L = =λ
λ2
2

 

For the third mode, 

L =
3
2
λ  

so in general, we can extrapolate this to: 

L n

f n v
L

n

n

=

=

λ
2

2

 

These formulas are good for waves in a tube open on both ends. 

Examples of instruments with pipes open at both ends: 

• flute 

• trumpet 

• organ pipes 

You change the length of the tube by pressing keys.  In a flute, closing a key elongates the tube.  
In a trumpet or French horn, pressing keys adds additional lengths of tubing to the pipe. 

EXAMPLE 27-3:  a) Calculate the fundamental frequency and the first three overtones of a 
hollow pipe open at both ends having length 30.0 cm. b) Calculate the wavelength of each wave. 

We have  

f n v
Ln =

2
 

so 

f v
L

f
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m
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1

1

2
340

2 0 30
570

=

=

=

.b g  

λ 1 /2  =  L

λ 2  =  L

3 λ 3 /2  =  L

2 λ 4 =  L

F ir s t  H a rm o n ic

S e c o n d  H a r m o n ic

T h ir d  H a r m o n ic

F o u r th  H a r m o n ic

f 1  =  v /λ 1  =  v /2 L

f 2  =  v /λ 2
    =  v /L
    =  2 v /2 L

f 3  =  v /λ 3
    =  3 v /2 L

f 4  =  v /λ 4
    =  2 v /L
    = 4 v /2 L
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We have the same relationship between the frequencies: fn = nf1.  So f2 = 2f1 = 1140 Hz and f3 = 
3f1 = 1710 Hz. 

b) The wavelength is given by 

v f
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Standing Waves in a Pipe Open on One End 
We can also have pipes that are closed on one end and open on the other.  (Closed on two ends 
wouldn’t make any sense.)  This is a slightly different case, because at the closed end, we’re 
required to have a displacement node, which will change the wave patterns allowed.  Although 
the frequencies of waves in a pipe open at two ends are the same as those of a string with the 
same length, the case of waves in a pipe open at only one end will be quite different.  We can 
draw the allowed patterns as shown. 

In general, 

L n n=
λ
4

 

f n v
Ln =

4
 

 but n can only be odd!  Therefore, we 
talk about this case having only odd 
harmonics.  There are only λ1, λ3, λ5…We 
call λ3 the first overtone, λ5 the second 
overtone, etc. 

Examples of instruments with pipes closed 
at one end include organ pipes 

 

EXAMPLE 36-4:  a) Calculate the 
fundamental frequency and the first three 
overtones of a hollow pipe open at one 

end having length 30.0 cm. b)  Calculate the wavelength of each wave. 

 

λ 1 /4  =  L

L  =  3 λ 3 /4

f 1  =  v /λ 1  =  v /4 L

f  3 =  v /λ 3  =  3 v /4 L

f 5  =  v /λ 5  =  5 v /4 L

L  =  5 λ 5 /4

f 7  =  v /λ 7  =  7 v /4 L

L  =  7 λ 7 /4

W a v e s  in  P ip e s  O p e n  a t  O n e  E n d
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We have  

f n v
Ln =

4
, but we are restricted to n odd 

so 

( )

( )

( )

( )

1
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340 283
4 4 0.30

3403 3 850
4 4 0.30

3405 5 1420
4 4 0.30

3407 7 1980
4 4 0.30

m
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m
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m
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m
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vf Hz
L m
vf Hz
L m

vf Hz
L m

vf Hz
L m

= = =

= = =

= = =
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c) The wavelength is given by 
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