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We have made a systematic study of rubidium optical pumping in a simple cylindrical cell geometry with a
high-power 10 W diode laser array, low magnetic fields, and buffer-gas pressures of less than 50 torr. We have
determined rubidium polarizations experimentally for H2, N2, He, and Ar buffer gases, with Rb number
densities from 1012 to 1013 cm−3. Comparison to a relatively simple optical pumping model allows us to
extract useful information about radiation trapping and quenching effects.
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I. INTRODUCTION

Optical pumping of alkali-metal atoms is an important
tool in atomic physics. It is used in a broad range of experi-
ments such as the storage of light �1�, atomic clocks �2,3�,
and the generation of polarized noble gases through spin
exchange �4�. Although the fundamental technique of these
experiments is the same, they operate under very different
conditions. Storage of light in a warm rubidium vapor is
done with little or no buffer gas and spectrally narrow, low-
power lasers, while systems that use spin-exchange optical
pumping to generate polarized noble gases tend to use high
buffer-gas densities and broad, high-power lasers. The work
reported here deals with a third regime, using broad, high-
power lasers with low pressures of buffer gas. These condi-
tions are required by alcali-metal atoms “spin-filter” sources
of polarized electrons �5�, which are useful for studies of
phenomena such as collisionally induced atomic multipole
moments �6�.

In spin-filter type sources, electrons become polarized by
spin exchange with the optically pumped rubidium atoms, so
high rubidium polarizations are crucial. However, the neces-
sity of passing the electrons through the Rb vapor requires
that the buffer gas pressures be modest �generally less than a
few torr� to maintain any appreciable electron current. Fur-
thermore, to make the system as simple as possible, we cur-
rently use a diode laser array rather than a dye laser. This
results in conditions that are unusual for modern optical
pumping: a spectrally broad light source pumping an opti-
cally thick sample without sufficient molecular buffer gas to
completely quench the excited-state rubidium.

II. EXPERIMENTAL PROCEDURE AND MEASUREMENT

To better understand our system performance, we
undertook a study to characterize the rubidium polarization
under these conditions. Our optical pumping experiments
were conducted in a test cell with no electron beam present
�Fig. 1�.

The cell is a modified 2–3/4� Conflat nipple, 5� long,
with standard glass view ports at each end and a side con-
nection to the vacuum system. The vacuum is maintained
using a diffusion pump, and the buffer-gas pressures are de-

termined by a capacitance manometer. A Rb ampoule �natu-
ral abundance� is placed directly in the test cell. For our
uncoated cell, exchange with the bulk material is a negligible
source of polarization loss. The system is placed inside a
solenoid that provides a magnetic field along the pumping
axis.

A set of heater tapes is used to maintain the temperature
of the cell to roughly 1 °C accuracy, at a specific buffer-
gas pressure. To make measurements at a constant rubidium
density, this temperature had to be adjusted as the buffer-gas
pressure was varied, since the change in pressure leads to
greater absorption of laser light and varying thermal gradi-
ents in the cell. A heat gun directed at the front window of
the cell keeps it at a higher temperature than the metal sides
to prevent condensation of the rubidium on the glass.

The rubidium is pumped using a 10 W diode array tuned
to the rubidium D1 transition, and has a spectral width of
about 700 GHz. Given our operating conditions, about 2 W
of laser power actually reaches the cell, with a rectangular
shape �roughly 4.0�0.5 cm� as determined by our optical
setup. From these values, we deduce that we are well below
saturation for this transition. The average density and polar-

FIG. 1. �Color online� Apparatus schematic. �1� linear polariz-
ers, �2� quarter-wave retarder, �3� telescope, �4� interference filter,
�5� photodiode, �6� beamsplitter.
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ization of the Rb are determined optically by measuring the
Faraday rotation of a linearly polarized probe laser at the Rb
D2 transition. The probe beam is oriented so that it overlaps
the pump laser throughout the cell’s interior. The photodetec-
tor that observes the probe signal is shielded by a spectrally
narrow interference filter to block out the pump light. To
measure the detuning of the probe beam from resonance, �, a
room-temperature reference cell is used for comparison;
typically measurements were made at �=6.0 GHz detuning.

To measure the number density of the rubidium, nRb, the
magnetic field is temporarily increased to 180 G. Optical
pumping and polarization measurements are performed at the
lower field of about 10 G. When the magnetic field is 180 G,
the optical rotation of linearly polarized light is dominated
by the diamagnetic Faraday effect. Measuring the optical ro-
tation �� associated with this effect yields the density �7,8�,

nRb =
48������2

7L�nat�2
2��B/h�B

, �1�

where L is the cell length, �2 is the D2 wavelength of
780.0 nm, �nat is the D2 natural linewidth of 6.1 MHz, and
��B/h� is the Bohr magneton of 1.4 MHz/G. For a 10 G
magnetic field, the optical rotation is dominated by the para-
magnetic Faraday effect, and yields the Rb polarization �7,8�

PRb =
56������

3nRbL�nat�2
2 , �2�

where PRb is defined as

PRb =
n↑ − n↓

n↑ + n↓
, �3�

with n referring to the population densities of the rubidium
valence electron spins along the pumping axis. We empha-
size that the polarizations shown are the average value within
the pump beam volume over the cell length.

Our data covers four different rubidium densities, from
1.0�1012 cm−3 to 1.0�1013 cm−3, and four different buffer-
gas species: argon, helium, hydrogen, and nitrogen. There is
some variation in rubidium density during each run or be-
tween buffer species, at the 10–20% level. The measured
values of the rubidium polarization can be seen in Figs.
2�a�–2�h�, as well as curves based on our simplified model.
Data obtained with no buffer-gas pressure is presented sepa-
rately in Fig. 3.

III. DESCRIPTION OF MODEL

We present a relatively simple model for our apparatus to
describe the rubidium polarization in the presence of buffer
gas. The polarization will depend on a number of factors,
including the laser power absorbed, the diffusion rate of ru-
bidium through the buffer gas to the walls �assumed to be
completely depolarizing�, polarization losses due to colli-
sions with the buffer-gas atoms, the effects of radiation trap-
ping, and the mitigation of trapping from quenching colli-
sions with molecular buffer gases. We begin with a standard
equation for the rubidium polarization,

PRb =
	

	 + �
, �4�

where 	 describes the integrated optical pumping rate, and �
represents the sum of all spin destruction mechanisms. We
write the loss rate � as the sum of three terms,

� = �dif + �col + �rt, �5�

where �dif is the contribution from rubidium diffusing to the
walls, �col is from collisions in the gas, and �rt is from ra-
diation trapping. The first two loss mechanisms are well un-
derstood; for our situation, we calculate that relaxation due
to the diffusion to the walls �7� is much greater than relax-
ation from buffer-gas collisions �9,10�, and so we neglect
contributions of collisions to spin relaxation.

For a cylindrical cell of radius R, diffusive losses are ap-
proximated by the lowest order diffusion mode, leading to a
loss rate of �7�

�dif = ���

L
�2

+ ��

R
�2�Do

po

p
, �6�

where �=2.405 is the first zero of the Bessel function Jo, Do
is the diffusion constant at po=760 torr, and p is the cell
pressure in torr. The values of the diffusion constants at
100 °C are 0.22 cm2/s for Ar �9�, 0.23 cm2/s for N2 �11�,
0.73 cm2/s for He �12�, and 1.52 cm2/s for H2 �13�.

Radiation trapping at low magnetic fields is quite complex
and difficult to calculate �14–17�. Radiation trapping occurs
in an optically thick vapor when photons spontaneously
emitted during the optical pumping cycle are absorbed by
other atoms before the photons escape the sample. This pro-
cess is harmful to polarization in two ways. For any value of
the magnetic field, it can increase the average time atoms
spend in their excited state per pumping cycle, thus effec-
tively reducing the pump rate. In addition, in low magnetic
fields, reabsorbed photons may depolarize the absorbing at-
oms, so the relaxation rate is increased.

It can be shown that a multiplicity factor, M, can effec-
tively characterize the extent of radiation trapping. Physi-
cally, M is the average number of times a photon is emitted
before it escapes the experiment volume; �M −1� is the av-
erage number of times a photon is absorbed by atoms after it
is produced in a pumping cycle. For optically thin samples,
trapping does not occur and the value of M approaches 1.

It can also be shown that M is useful in describing the
effects of radiation trapping on optical pumping even if cal-
culations of M are greatly simplified. For example, it is pos-
sible to neglect complicated contributions such as the angu-
lar emission of radiation, and to use an overall number
density of atoms rather than carefully accounting for the
number of atoms in excited and ground states in an iterative
computation. It is also adequate to approximate the multi-
plicity factor for our cylindrical geometry with that of a
sphere of the same radius. A detailed derivation of the mul-
tiplicity factor and examination of these simplifying assump-
tions is presented elsewhere �18�.

Briefly, the simplified multiplicity factor is derived from
the rate equations for the number densities of atoms in the
ground and excited states, ng and ne respectively, in a two-
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FIG. 2. �Color online� �a�-�h� Rubidium polarization for different rubidium densities as a function of buffer gas pressure. �a�-�d� show
results for argon and nitrogen, and �e�-�h� show results for hydrogen and helium. The experimental data is shown with filled circles for the
results with molecular buffer gas and open circles for the atomic gases. The solid line is the result of our model with molecular buffer gas
and the dashed line with the atomic gas. Note the different vertical scale for �a�, �g�, and �h�.
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level system. If the sample is a sphere of radius R, and the
populations of the ground and excited states are spatially
constant, the rate equation for the ground-state atoms at the
center of the sphere is

�ng

�t
= 
�ne − ng� + 	̃ne − 	̃ne	

r=0

R

d3r	
�=0

�

d�
g���
4�r2

�exp�−
�2A

8�
g����ng − ne�r�
�2A

8�
g����ng − ne�� .

�7�

Here, the optical pump rate of atoms is 
, the spontaneous
rate of decay of atoms from the excited state to the ground
state is 	̃ or A, and g��� is the normalized line shape of the
transition. In this expression, the first term represents the
atoms absorbing light and moving from the ground state to
the excited state less those making the opposite transition via
stimulated emission. The second term represents the sponta-
neous decay of excited state atoms. The third term describes
the effect of radiation trapping on the number density of
ground state atoms at the center of the volume. At a distance
r from the center of the cell, the number density of photons
produced by spontaneous decay is given by 	̃ ne, and their
spatial and frequency distribution is g��� /4�r2. The expo-
nential factor describes the absorption of light as it travels to
the center of the volume, and the term in curly brackets the
probability that, once at the center, the photons are absorbed.
When integrated over r and �, the third term is the number
density of ground state atoms at the center of the volume
moved to the excited state by photons emitted by other atoms
in the sample.

To evaluate Eq. �7�, the volume integral over r is evalu-
ated first, yielding

�ng

�t
= 
�ne − ng� + 	̃ne − 	̃ne	

�=0

�

d��g��� − g���

�exp�−
�2AR

8�
�ng − ne�g����� . �8�

Since the line shape is normalized, the first term in the inte-

gral yields a value of 1. For the second term, the absorption
profile is approximated with a Gaussian line shape with cen-
ter frequency �o and full width at half maximum �FWHM�
�
, so that

g��� =
2

�

� ln 2

�
exp
−

4 ln 2�� − �o�2

�
2 � .

Defining x2 to be

4 ln 2�� − �o�2

�
2 ,

the rate equation becomes

�ng

�t
= 
�ne − ng� + 	̃ne	

x=−�o2�ln 2/�


�

dx
e−x2

��

�exp�−
�2AR�ng − ne��ln 2

4����

e−x2� , �9�



�ne − ng� +
	̃ne

M
, �10�

where the multiplicity factor, M, is defined as the reciprocal
of the integral. Comparing Eq. �10� to the rate equation for
the same system in the absence of radiation trapping,

�ng

�t
= 
�ne − ng� + 	̃ne, �11�

we see that the expressions differ only by the multiplicity
factor in the spontaneous decay term.

The integral is evaluated by extending the lower limit of
integration to negative infinity and using Hermite integra-
tion, in which an integral of the form �−�

+�F�x�e−x2
dx is ap-

proximated with �iwiF��i�. The factors wi and �i are the
weights and abscissas for Hermite integration �19�. Factors
for Hermite integration can be found in standard references;
for our symmetric integral we used values for 32-term point
Hermite integration from an engineering website �20�, yield-
ing a 16-term sum for M. Approximating the difference of
the number densities of atoms in the ground and excited
states as the overall number density gives, for our experi-
ment,

M =
��

�
i

wi exp�−
nRbR�1

2
A1

�ln 2

��14���

exp�− �i
2��

. �12�

Here, �1 is the wavelength of the D1 transition, A1 is the
spontaneous decay rate, and ��1 is the full width of the
transition.

In the regime of nRb=1012–1013 cm−3, our variation of
10–20% in the Rb number density translates to a variation of
10–30% in the value of �M −1�. We use values of
795 nm, 3.6�107 Hz, and 1.75 cm for �1, A1, and R, respec-
tively. Numerically we find that M =3.4 at a rubidium density
of 1.0�1012 cm−3, M =14 at 3.0�1012, M =28 at

FIG. 3. Rubidium polarization versus rubidium density with no
buffer gas present.
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5.1�1012 cm−3, and M =63 at 1.0�1013 cm−3.
The effects of pressure broadening are not accounted for

in our model; we simply fix the absorption width of the Rb
D1 transition as 8 GHz. Since absorption extends well into
the wings of each of the individual hyperfine transitions of
each isotope, this seems to be an acceptable approximation.
�All four of the buffer gases we employed broaden the Rb
transition at about the same rate of 29 MHz/ torr for 100 °C
�21,22��.

If a photon from an optical pumping cycle is reabsorbed
�M −1� number of times and the optical pump rate is 	, to
first order, the contribution of radiation trapping to spin re-
laxation is

�rt = K�M − 1�	 , �13�

where K is a fit parameter. We expect K to be less than 1.0
because scattered photons may be less than perfectly depo-
larizing and the nuclear spin may have an inertial effect on
the radiation trapping, as described by a “nuclear slowing-
down factor,” S �23�. Equation �13�, however, neglects the
quenching effect of the molecular buffer gases.

The atomic buffer gases, argon and helium, and the mo-
lecular buffer gases, nitrogen and hydrogen, are both useful
in reducing the rate of depolarization due to diffusion to the
walls. Collisions with atomic buffer gases will not change
the electronic state of the rubidium, but a collision with a
molecule can de-excite the rubidium, transferring the energy
into the internal vibrational states of the molecule. Since this
prevents a photon from being spontaneously emitted, this
phenomenon is referred to as quenching. It is standard pro-
cedure in spin-exchange optical pumping to include a quan-
tity of N2 �at least 50 torr� in the optical pumping volume for
precisely this reason.

The rate of quenching collisions, �Q, can be determined
from the quenching cross section, �Q, the relative velocity of
the two species vrel �24�, and the number density of buffer-
gas atoms, nbuf:

�Q = nbuf��Qvrel� . �14�

Quenching cross sections for the rubidium 2P1/2→ 2S1/2 tran-
sitions have been measured �25� to be 5.8�10−15 cm2 for
nitrogen and 6�10−16 cm2 for hydrogen, and the relative
velocities between rubidium and the buffer-gas molecules is
5.8�104 cm/s for nitrogen and 1.9�105 cm/s for hydro-
gen. If A1 is the spontaneous decay rate, the fraction of atoms
that reach the ground state by emitting a photon rather than
quenching is

fspon =
A1

A1 + �Q
. �15�

Evaluating Eq. �15� and expressing it in more convenient
units gives

fspon,H2
=

12 torr

12 torr + pH2

�16a�

and

fspon,H2
=

4.1 torr

4.1 torr + pN2

, �16b�

where p stands for the buffer gas pressure in torr at 100 °C.
We can now modify Eq. �13� to express the contribution

of radiation trapping, including quenching, to the spin relax-
ation rate,

�rt = K�M − 1�	fspon, �17�

where fspon is given in Eqs. �16a� and �16b� for the molecular
buffer gases and fspon=1 for the atomic buffer gases.

To complete our model, we consider the optical pumping
rate, 	. This is a two-stage process of photon absorption at
rate 
 and subsequent spontaneous decay at rate A1. In the
presence of buffer gas, the upper states of the rubidium mix
rapidly, giving equal populations of the excited state. Thus,
we write

1

	untrapped
= 2� 1



+

1

A1
� . �18�

This expression is modified by radiation trapping to be

1

	trapped
= 2� 1



+

M

A1
� . �19�

In this experiment, the photon absorption rate is several or-
ders of magnitude below the spontaneous decay rate, while
M remains less than 100. We can therefore neglect the sec-
ond term in the calculation of the optical pumping rate, and
simply write 	=
 /2.

Strictly speaking, both 	 and the spin destruction rate �
depend on position and frequency in a complicated fashion.
For purposes of our simplified model, however, we will take
both 	 and � to be averages over space and wavelength.
Likewise the nuclear slowing-down factor S �23� will affect
the optical pumping rate, but since we treat 	 as a fit param-
eter this does not affect the model.

Substituting Eqs. �17� and �5� into Eq. �4� gives

P =
1

1 +
�dif

	
+ K�M − 1�fspon

. �20�

This function is plotted with the data in Figs. 2�a�–2�h� using
our best fit values. We use K=0.12 for all plots, but vary 	
with Rb density; 	=500s−1 for the lowest density �plots �a�
and �e��, 325 s−1 for the second lowest ��b� and �f��, 200 s−1

for the second highest ��c� and �g�� and 150 s−1 for the high-
est density ��d� and �h��. These values fall with density as
expected, given the increasing loss of pumping light at the
front of the cell.

IV. DISCUSSION AND CONCLUSIONS

Examining the figures, one sees that our empirical model
captures many features of the data. For low buffer-gas pres-
sures, the polarizations increase with buffer-gas pressure be-
cause the buffer gases inhibit diffusion to the walls. Ru-
bidium polarizations for nitrogen and argon are very similar
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in this regime, as would be expected from the similarity of
their diffusion constants. Rubidium polarization with hydro-
gen buffer gas is less than that with helium, again as ex-
pected from the larger diffusion constant of H2. After a slow
initial rise, however, the curves for molecular buffer gases
diverge from those of the atomic buffer species. The molecu-
lar curves diverge from the atomic ones at 1 or 2 torr for
nitrogen versus argon, and closer to 5 torr for hydrogen and
helium. In each case, this is the value for which fspon reaches
about 2 /3.

As the molecular buffer-gas pressure increases further, the
Rb polarization rises steadily; for nitrogen at the higher ru-
bidium densities the values actually rise faster than our
model prediction. In contrast, for increasing amounts of
atomic buffer gas the polarization curves flatten out when the
radiation trapping term of Eq. �20� exceeds the diffusion
term. As the Rb number density increases this occurs at a
lower buffer-gas pressure, and so results in a lower polariza-
tion plateau. For the lower rubidium densities, the polariza-
tion of the atomic species actually falls in the higher pressure
region. Since this only happens to the atomic species, we
speculate that this is related to the intricacies of the radiation
trapping effects. The details of that process are not obvious
to us, and are not reflected in our model. As we mentioned
previously, depolarization at higher atomic buffer-gas densi-
ties due to depolarizing collisions with the buffer gas itself

can safely be ruled out based on known rates for both binary
�9� and three-body collisions �10�.

Despite the multitude of approximations made, Eq. �20�
serves fairly well as a simple model of rubidium polarization
for low buffer-gas pressures, as can be seen by the rough
agreement with the data. The virtue of the model is that it
provides an estimate of rubidium polarization under these
complicated conditions, with only a few known or calculated
values required as input.

In conclusion, we have presented data sets for rubidium
polarization as a function of alkali density and buffer gas
pressure. Radiation trapping is the limiting factor for many
of our polarizations, and quenching effects are clearly visible
in the contrast between atomic and molecular species of
similar sizes. We have developed a simplified model that
gives rough agreement with the data and provides further
insight into the process of radiation trapping.
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